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data!
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Data-free backdoor injection 
for IP protection

When we don’t data: Data-free learning

● Case 1: Post-training backdoor injection for post-hoc IP protection.
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Data-free distillation

When we don’t data: Data-free learning

● Case 2: Data-free Distillation: Compress a teacher model without data.
Large Poisoned Teacher Model

Small Student Model

Will backdoor transfer? 
How to defend?



Safe and Robust Watermark Injection 
with a Single OoD Image

Shuyang Yu, Junyuan Hong, Haobo Zhang, Haotao Wang, Zhangyang Wang, Jiayu Zhou 

https://arxiv.org/abs/2309.01786



Data-free backdoor injection 
for IP protection

When we don’t data: Data-free learning

● Case 1: Post-training backdoor injection for post-hoc IP protection.
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Desired for Post-Training Watermarking

● Safety: No access to training data
● Robustness: Resilient to removal.
● Utility: Good model performance



Our solutions

● Safety: No access to training data
○ Finetune model using OoD data without awareness of training data.

● Robustness: Resilient to removal.
○ Perturbed finetuning is more robust to defense.

● Utility: Good model performance
○ Finetuning with small learning rate.
○ Finetuning on OoD data does not perturb the benign knowledge.



Watermark Injection with a Single OoD Image



Robust Watermark Injection 
via Adversarially Perturbed Finetuning

● Intuition: 



Optimization for Adversarially Perturbed Finetuning

1. v-step

2.   w-step



OoD Injection is Fast and Maintains Utility



OoD Injection is Robust Against Various Watermark Removing



OoD Injection for Post-Training Data-Free Watermarking

● Safety: No access to training data
○ Finetune model using OoD data without awareness of training data.

● Robustness: Resilient to removal.
○ Perturbed finetuning is more robust to defense.

● Utility: Good model performance
○ Finetuning with small learning rate.
○ Finetuning on OoD data does not perturb the benign knowledge.



Revisiting Data-Free Knowledge 
Distillation with Poisoned Teachers

Junyuan Hong *  Yi Zeng *  Shuyang Yu *  Lingjuan Lyu  Ruoxi Jia  Jiayu Zhou 

https://arxiv.org/abs/2306.02368



Data-Free Knowledge Distillation with Poisoned Teachers



Data-Free Knowledge Distillation with Poisoned Teachers

min

Backdoored training

Ground-truth: Mouse
    Prediction: Frog

Trigger patch



Data-Free Knowledge Distillation with Poisoned Teachers
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Can backdoor transfer without poisoning data?

Transfer!





Can backdoor transfer without poisoning data?

● Data-free knowledge distillation (KD)

● Can a student trust the knowledge transferred from an untrusted teacher? 
● Data-free backdoor transfer

Synthsize data 

OOD random samples



Potential Risks and Defense Strategies

● Risks
○ Risk1: Potential Risk in Bad Synthetic 

Input Supply
○ Risk2: Potential Risk in Bad 

Supervision



Potential Risks and Defense Strategies

● Risks
○ Risk1: Potential Risk in Bad Synthetic 

Input Supply
○ Risk2: Potential Risk in Bad 

Supervision
● Defense: Anti-Backdoor Data-Free 

(ABD) KD
○ Shuffling Vaccine (SV): Use shuffled 

model (vaccine) to suspect and 
suppress malicious generation.

○ Self-Retrospection (SR): Suspect the 
student model to find and remove 
backdoor triggers.



● Shuffling Vaccine (SV)
○ Inspired by channel shuffling
○ Suppresing backdoor generation.

● Suppressing suspicious distillation.

Score metric



● Shuffling Vaccine (SV)
○ Inspired by channel shuffling
○ Suppresing backdoor generation.

● Suppressing suspicious distillation.

● Self-Retrospection (SR)
○ SR task

● Solve the optimization



Overall pipline

Intuition



Proposed Defense



Experimental highlights



Main contributions

● Uncover the security risk of data-free KD regarding poisoned teachers.
● Identify two potential causes for the backdoor transfer: poisonous synthesis 

samples and supervisions.
● Mitigate the data-free backdoor transfer by a novel Anti-Backdoor Data-free 

KD (ABD) method.
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Open questions

● More risks and applications in data-free learning?
● A survey is desired! Welcome to collaborate


