
MECTA: Memory-Economic Continual 
Test-Time Model Adaptation

Junyuan Hong1*, Lingjuan Lyu2, Jiayu Zhou1, Michael Spranger2
1Michigan State University, 2Sony AI

*Work done during internship at Sony AI

1



Continually Changing Environments

2Wang, Q., Fink, O., Van Gool, L., & Dai, D. (2022). Continual test-time domain adaptation. CVPR.
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Continual Test-time Adaptation (CTA)

3Wang, Q., Fink, O., Van Gool, L., & Dai, D. (2022). Continual test-time domain adaptation. CVPR.
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Continual adaptation via Tent/EATA
of ResNet50 w/ 64-sized batches

Continual Test-time Adaptation (CTA)

Car 90%

Wang, D., Shelhamer, E., Liu, S., Olshausen, B., & Darrell, T. 
(2021). Tent: Fully test-time adaptation by entropy 
minimization. ICLR.
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Continual adaptation via Tent/EATA
of ResNet50 w/ 64-sized batches

Continual Test-time Adaptation (CTA)

Car 90%

Entropy Minimization (Tent)

Wang, D., Shelhamer, E., Liu, S., Olshausen, B., & Darrell, T. 
(2021). Tent: Fully test-time adaptation by entropy 
minimization. ICLR.

CTA:
• Unsupervised finetuning.
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of ResNet50 w/ 64-sized batches

Continual Test-time Adaptation (CTA)

Car 90%

Entropy Minimization (Tent)

Wang, D., Shelhamer, E., Liu, S., Olshausen, B., & Darrell, T. 
(2021). Tent: Fully test-time adaptation by entropy 
minimization. ICLR.

CTA:
• Unsupervised finetuning.
• Parameter efficient: Update BN only.
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Entropy Minimization (Tent)

Wang, D., Shelhamer, E., Liu, S., Olshausen, B., & Darrell, T. 
(2021). Tent: Fully test-time adaptation by entropy 
minimization. ICLR.

CTA:
• Unsupervised finetuning.
• Parameter efficient: Update BN only.
• Batch-estimated BN statistics (𝜇, 𝜎) 

for capturing new environment. 

Batch Norm (BN)
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of ResNet50 w/ 64-sized batches

Continual Test-time Adaptation (CTA)

Car 90%

Entropy Minimization (Tent)

Wang, D., Shelhamer, E., Liu, S., Olshausen, B., & Darrell, T. 
(2021). Tent: Fully test-time adaptation by entropy 
minimization. ICLR.
Niu, S., Wu, J., Zhang, Y., Chen, Y., Zheng, S., Zhao, P., & 
Tan, M. (2022). Efficient test-time model adaptation 
without forgetting. ICML.

CTA:
• Unsupervised finetuning.
• Parameter efficient: Update BN only.
• Batch-estimated BN statistics (𝜇, 𝜎) 

for capturing new environment. 
• (EATA by Niu et al., 2022) 

Computation efficient.

Batch Norm (BN)



9

Forward
Backward

Batch Norm

Conv

Batch Norm

Conv

model.forward

Cache for inference

model.init 156 Mb

+786 Mb

Continual adaptation via Tent/EATA
of ResNet50 w/ 64-sized batches

High memory load for CTA on edge

Raspberry Pi: 1-4Gb RAM
* Enough for inference
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Continual adaptation via Tent/EATA
of ResNet50 w/ 64-sized batches

High memory load for CTA on edge

Raspberry Pi: 1-4Gb RAM
* Enough for inference but 
not for adaptation
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optimizer.init +98 Mb
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Continual adaptation via Tent/EATA
of ResNet50 w/ 64-sized batches

High cache memory for back-propagation

Traditional CTA cannot fit into low-
memory devices.
• (B) Require large batch size for 

statistic estimation.
• (L&C) The cache tensor 𝑧 scales 

by number of layers and 
channels.

Batch-norm

Cache size



Memory-Efficient Adaptation by MECTA
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Memory-Efficient Adaptation by MECTA

• (B) Reduce batch size and 
maintain accurate statistic 
estimation.
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Memory-Efficient Adaptation by MECTA

• (B) Reduce batch size and 
maintain accurate statistic 
estimation.
• (C) Reduce channels to update.
• (L) Reduce layers to update.
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Drop cache  Drop gradient
Maintain effective adaptation requires 
enough gradient information.



Memory-Efficient Adaptation by MECTA

• (B) Reduce batch size and 
maintain accurate statistic 
estimation per BN layer.
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Statistic of current batch
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Memory-Efficient Adaptation by MECTA

• (B) Reduce batch size and 
maintain accurate statistic 
estimation per BN layer.
• Moving average accommodate 

small batch sizes towards robust 
and accurate statistic estimations.
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Exponential Moving Average (EMA)

Statistic of current batchPrevious memory
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Memory-Efficient Adaptation by MECTA

• (B) Reduce batch size and 
maintain accurate statistic 
estimation.
• Moving average accommodate 

small batch sizes towards robust 
and accurate statistic estimations.
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𝛽 = 1 : Only using current small batch result in 
inaccurate estimation.

Exponential Moving Average (EMA)

𝜙 represents [𝜇, 𝜎]

Previous memory Statistic of current batch

Batch Norm (B)

MECTA Norm

How to set 𝛽 in changing env?



Memory-Efficient Adaptation by MECTA

• (B) Reduce batch size and 
maintain accurate statistic 
estimation.
• Moving average accommodate 

small batch sizes towards robust 
and accurate statistic estimations.
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𝛽 = 1 : Only using current small batch result in 
inaccurate estimation.

Exponential Moving Average (EMA)

𝛽 = 0 : Only using training/past stat (without 
updates) result in non-adaptive/non-robust 
estimation.

𝜙 represents [𝜇, 𝜎]

Previous memory Statistic of current batch

How to set 𝛽 in changing env?



Memory-Efficient Adaptation by MECTA

• (B) Reduce batch size and 
maintain accurate statistic 
estimation.
• Moving average accommodate 

small batch sizes towards robust 
and accurate statistic estimations.
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𝜙 represents [𝜇, 𝜎]

𝛽 = 1 : Only using current small batch result in 
inaccurate estimation.

Exponential Moving Average (EMA)

Statistic of current batch

𝛽 = 0 : Only using training batch (without 
updates) result in non-adaptive estimation.

0 < 𝛽 < 1
Trade-off between accuracy and adaptivity

Previous memory



𝛽 = 0 : Only using training batch (without 
updates) result in non-adaptive estimation.

Memory-Efficient Adaptation by MECTA

• (B) Reduce batch size and 
maintain accurate statistic 
estimation.
• Moving average accommodate 

small batch sizes towards robust 
and accurate statistic estimations.
• Adaptive memory by time-varying 
𝛽.
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𝜙 represents [𝜇, 𝜎]

𝛽 = 1 : Only using current small batch result in 
inaccurate estimation.

Exponential Moving Average (EMA)

Statistic of current batch

0 < 𝛽 < 1
Trade-off between accuracy and adaptivity

Previous memory

𝑃)*+ = 𝑃) : Stable           𝛽 → 0 (accurate)
𝑃)*+ ≠ 𝑃) : On change.  𝛽 → 1 (fast adapt)



𝛽 = 0 : Only using training batch (without 
updates) result in non-adaptive estimation.

Memory-Efficient Adaptation by MECTA

• (B) Reduce batch size and 
maintain accurate statistic 
estimation.
• Moving average accommodate 

small batch sizes towards robust 
and accurate statistic estimations.
• Adaptive memory by time-varying 
𝛽.
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𝜙 represents [𝜇, 𝜎]

𝛽 = 1 : Only using current small batch result in 
inaccurate estimation.

Exponential Moving Average (EMA)

Statistic of current batch

0 < 𝛽 < 1
Trade-off between accuracy and adaptivity

Previous memory

𝜙)*+ = 6𝜙) : Stable           𝛽 → 0 (accurate)
𝜙)*+ ≠ 6𝜙) : On change.  𝛽 → 1 (fast adapt)



Memory-Efficient Adaptation by MECTA

• (B) Reduce batch size and 
maintain accurate statistic 
estimation.
• (C) Reduce channels to update.
• (L) Reduce layers to update.
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Memory-Efficient Adaptation by MECTA

• (C) Reduce channels to update.
• Drop 𝑞×100% channels in cache.
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Maintain effective adaptation requires 
enough gradient information.



Memory-Efficient Adaptation by MECTA

• (C) Reduce channels to update.
• Stochastically drop 𝑞×100%

channels in cache.
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Maintain effective adaptation requires 
enough gradient information.



Memory-Efficient Adaptation by MECTA

• (C) Reduce channels to update.
• Stochastically drop 𝑞×100%

channels in cache.
• Implicit gradient regularization 

which mitigates forgetting.
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Niu, S., Wu, J., Zhang, Y., Chen, Y., Zheng, S., Zhao, P., & Tan, M. (2022). Efficient test-time model 
adaptation without forgetting. ICML.

forgetting



Memory-Efficient Adaptation by MECTA

• (Reduce B) Adaptive and online 
statistic estimation on dynamic 
distributions for accurate 
statistics on small batch sizes.
• (Reduce C) Channel-sparse 

gradients via stochastically-
pruned caches.
• (Dynamic L) Cache and train 

layers on demand.
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Memory-Efficient Adaptation by MECTA

• (Dynamic L) Cache and train 
layers on demand.
• If environment is stable, there is 

no need to continually adapt.
• Stop gradient to save caches.
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Memory-Efficient Adaptation by MECTA

• (Dynamic L) Cache and train 
layers on demand.
• If environment is stable, there is 

no need to continually adapt.
• Stop gradient to save caches.
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• When to stop? Environment is stable.
• When to restart? Environment changes.



Memory-Efficient Adaptation by MECTA

• (Dynamic L) Cache and train 
layers on demand.
• If environment is stable, there is 

no need to continually adapt.
• Stop gradient to save caches.
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Memory-Efficient Adaptation by MECTA

• (Dynamic L) Cache and train 
layers on demand.
• If environment is stable, there is 

no need to continually adapt.
• Stop gradient to save caches.
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Memory-Efficient Adaptation by MECTA

• (Dynamic L) Cache and train 
layers on demand.
• If environment is stable, there is 

no need to continually adapt.
• Stop gradient to save caches.
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Memory-Efficient Adaptation by MECTA

• (Reduce B) Adaptive and online 
statistic estimation on dynamic 
distributions for accurate 
statistics on small batch sizes.
• (Reduce C) Channel-sparse 

gradients via stochastically-
pruned caches.
• (Dynamic L) Cache and train 

layers on demand.
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Memory-economic continual adaptation via MECTA
of ResNet50 w/ 16-sized batches

Memory-Efficient Adaptation by MECTA

MECTA greatly reduce running 
memory.



Benchmark: Accuracy & Memory Efficiency
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Best trade-off between memory and 
accuracy.

Changing test-time noise



MECTA dynamically cache data on demand
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Cache on demand of 
environment change



Benchmark with Constrained Cache
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Better accuracy on all noise, 
reasonable computation load.

MECTA norm avoid 
forgetting of TENT.



Which component matters more?
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B, C are more effective while L is 
useful in low memory region.

Trade-off between robust accuracy and memory (cache size)



MECTA: Memory-Economic Continual Test-Time 
Model Adaptation

• New Problem: We initiate the study on the memory efficiency of 
continual test-time adaptation (CTA), revealing the substantial 
obstacle in practice.
• New Method: We propose a novel method with a simple plug-in 

MECTA Norm layer that improves the memory efficiency of different 
CTA methods. 
• Better Memory-Robustness Trade-off: Our method maintains 

comparable performance to full back-propagation methods while 
significantly reducing the dynamic and maximal cache overheads. 
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Improve on-device machine learning memory efficiency 
on changing environments.



Thank you!
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