

MECTA: Memory-Economic Continual Test-Time Model Adaptation

Junyuan Hong^{1*}, Lingjuan Lyu², Jiayu Zhou¹, Michael Spranger²

¹Michigan State University, ²Sony Al

*Work done during internship at Sony AI

Sony Al

Continually Changing Environments

Accuracy on CIFAR10

Wang, Q., Fink, O., Van Gool, L., & Dai, D. (2022). Continual test-time domain adaptation. CVPR.

Wang, Q., Fink, O., Van Gool, L., & Dai, D. (2022). Continual test-time domain adaptation. CVPR.

Wang, D., Shelhamer, E., Liu, S., Olshausen, B., & Darrell, T. (2021). Tent: Fully test-time adaptation by entropy minimization. ICLR. 4

High memory load for CTA on edge

High memory load for CTA on edge

Raspberry Pi: 1-4Gb RAM * Enough for inference **but not for adaptation**

High cache memory for back-propagation

High cache memory for back-propagation

• (B) Reduce batch size and maintain accurate statistic estimation.

 $\mu = \frac{1}{B} \frac{1}{W} \frac{1}{H} \sum_{n,j,k}^{B,W,H} x_{n,i,j,k}$ Accurate **statistics** $\phi = [\mu, \sigma]$ require more samples in a batch (larger B).

$$z_{n,i,j,k}^{l} = \frac{x_{n,i,j,k}^{l} - \mu_{i}^{l}}{\sqrt{\sigma_{i}^{2} + \epsilon_{0}}}$$

$$R_{\text{bwd}} = \sum_{l=1}^{L} B \times C^{l} \times W^{l} \times H^{l} \ge R_{\text{fwd}}$$

- (B) Reduce batch size and maintain accurate statistic estimation.
- (C) Reduce channels to update.
- (L) Reduce layers to update.

$$z_{n,i,j,k}^l = rac{x_{n,i,j,k}^l - \mu_i^l}{\sqrt{\sigma_i^2 + \epsilon_0}}$$

$$R_{\text{bwd}} = \sum_{l=1}^{L} B \times C^{l} \times W^{l} \times H^{l} \ge R_{\text{fwd}}$$

Drop cache \Leftrightarrow Drop gradient Maintain effective adaptation requires **enough gradient** information.

 (B) Reduce batch size and maintain accurate statistic estimation per BN layer. Exponential Moving Average (EMA)

 ϕ represents [μ , σ]

- (B) Reduce batch size and maintain accurate statistic estimation per BN layer.
 - Moving average accommodate small batch sizes towards robust and accurate statistic estimations.

Exponential Moving Average (EMA)

 ϕ represents [μ , σ]

$$\phi_t = (1 - \beta)\phi_{t-1} + \beta\hat{\phi}_t,$$

Previous memory

Statistic of current batch

$$\mu = \frac{1}{B} \frac{1}{W} \frac{1}{H} \sum_{n,j,k}^{B,W,H} x_{n,i,j,k}$$

- (B) Reduce batch size and **maintain** accurate statistic estimation.
 - Moving average accommodate small batch sizes towards robust and accurate statistic estimations.

Exponential Moving Average (EMA)

 ϕ represents [μ , σ]

$$\phi_t = (1 - \beta)\phi_{t-1} + \beta\hat{\phi}_t,$$

Previous memory

Statistic of current batch

 $\beta = 1$: Only using current **small** batch result in **inaccurate** estimation.

- (B) Reduce batch size and **maintain** accurate statistic estimation.
 - Moving average accommodate small batch sizes towards robust and accurate statistic estimations.

Exponential Moving Average (EMA)

 ϕ represents $[\mu, \sigma]$ $\phi_t = (1 - \beta)\phi_t + \beta \hat{\phi}_t,$ Previous memory Statistic of current batch

 $\beta = 1$: Only using current small batch result in inaccurate estimation.

estimation.

- (B) Reduce batch size and maintain accurate statistic estimation.
 - Moving average accommodate small batch sizes towards robust and accurate statistic estimations.

Exponential Moving Average (EMA)

 ϕ represents $[\mu, \sigma]$ $\phi_t = (1 - \beta)\phi_t + \beta \phi_t,$ Previous memory Statistic of current batch

 $\beta = 1$: Only using current **small** batch result in **inaccurate** estimation.

 $0 < \beta < 1$ Trade-off between accuracy and adaptivity

 $\beta = 0$: Only using **training** batch (without updates) result in **non-adaptive** estimation.

- (B) Reduce batch size and maintain accurate statistic estimation.
 - Moving average accommodate small batch sizes towards robust and accurate statistic estimations.
 - Adaptive memory by time-varying β .

Exponential Moving Average (EMA)

 ϕ represents [μ , σ] $\phi_t = (1 - \beta) \phi_{t-1} + \beta \hat{\phi}_t,$

Previous memory

Statistic of current batch

 $\beta = 1$: Only using current **small** batch result in **inaccurate** estimation.

 $P_{t-1} = P_t : \text{Stable} \qquad \Rightarrow \beta \rightarrow 0 \text{ (accurate)}$ $P_{t-1} \neq P_t : \text{On change.} \Rightarrow \beta \rightarrow 1 \text{ (fast adapt)}$

 $\beta = 0$: Only using **training** batch (without updates) result in **non-adaptive** estimation.

- (B) Reduce batch size and maintain accurate statistic estimation.
 - Moving average accommodate small batch sizes towards robust and accurate statistic estimations.
 - Adaptive memory by time-varying β .

$$\beta_t = 1 - e^{-D(\phi_{t-1}, \hat{\phi}_t)},$$

 $D(\phi_{t-1}, \hat{\phi}_t) = \frac{1}{C} \sum_{i=1}^{C} KL(\phi_{t-1,i} \| \hat{\phi}_{t,i}) + KL(\hat{\phi}_{t,i} \| \phi_{t-1,i})$

Exponential Moving Average (EMA)

$$\phi$$
 represents $[\mu, \sigma]$
 $\phi_t = (1 - \beta)\phi_t + \beta \hat{\phi}_t,$
Previous memory Statistic of current batch

 $\beta = 1$: Only using current **small** batch result in **inaccurate** estimation.

 $\begin{array}{l} \phi_{t-1} = \hat{\phi}_t : \text{Stable} \qquad \clubsuit \ \beta \to 0 \text{ (accurate)} \\ \phi_{t-1} \neq \hat{\phi}_t : \text{On change.} \clubsuit \ \beta \to 1 \text{ (fast adapt)} \end{array}$

 $\beta = 0$: Only using **training** batch (without updates) result in **non-adaptive** estimation.

- (B) Reduce batch size and maintain accurate statistic estimation.
- (C) Reduce channels to update.
- (L) Reduce layers to update.

- (C) Reduce channels to update.
 - Drop $q \times 100\%$ channels in cache.

Drop cache ⇔ Drop gradient Maintain effective adaptation requires enough gradient information.

- (C) Reduce channels to update.
 - Stochastically drop $q \times 100\%$ channels in cache.

Stoc. drop cache ⇔ **Not** drop gradient. Maintain effective adaptation requires **enough gradient** information.

$$\mathbf{E}[M_i z_{n,i,k}] = q \mathbf{E}[z_{n,i,j,k}]$$

Expectation over continual batches can **restore** the dropped channels

- (C) Reduce channels to update.
 - Stochastically drop $q \times 100\%$ channels in cache.
 - Implicit gradient regularization which **mitigates forgetting**.

Niu, S., Wu, J., Zhang, Y., Chen, Y., Zheng, S., Zhao, P., & Tan, M. (2022). Efficient test-time model adaptation without forgetting. ICML.

- (Reduce B) Adaptive and online statistic estimation on dynamic distributions for accurate statistics on small batch sizes.
- (Reduce C) Channel-sparse gradients via stochasticallypruned caches.
- (Dynamic L) Cache and train layers on demand.

- (Dynamic L) Cache and train layers on demand.
 - If environment is **stable**, there is no need to continually adapt.
 - Stop gradient to save caches.

- (Dynamic L) Cache and train layers on demand.
 - If environment is **stable**, there is no need to continually adapt.
 - Stop gradient to save caches.

$$\phi_t = (1 - \beta)\phi_{t-1} + \beta \hat{\phi}_t,$$

Previous memory Statisti

• When to restart? Environment changes.

- (Dynamic L) Cache and train layers on demand.
 - If environment is **stable**, there is no need to continually adapt.
 - Stop gradient to save caches.

$$\phi_t = (1 - \beta)\phi_{t-1} + \beta\hat{\phi}_t,$$

Previous memory

Statistic of current batch

$$P_{t-1} = P_t$$
 : Stable.
 $P_{t-1} \neq P_t$: On change.

• When to restart? Environment changes.

- (Dynamic L) Cache and train layers on demand.
 - If environment is **stable**, there is no need to continually adapt.
 - Stop gradient to save caches.

$$\phi_t = (1 - \beta)\phi_{t-1} + \beta\hat{\phi}_t,$$

Previous memory

Statistic of current batch

$$P_{t-1} = P_t : \text{Stable} \quad \Leftarrow \beta \to 0$$

$$P_{t-1} \neq P_t : \text{On change.} \leftarrow \beta \to 1$$

$$\beta_t = 1 - e^{-D(\phi_{t-1}, \hat{\phi}_t)},$$

• When to restart? Environment changes.

- (Dynamic L) Cache and train layers on demand.
 - If environment is **stable**, there is no need to continually adapt.
 - Stop gradient to save caches.

$$\phi_t = (1 - \beta)\phi_{t-1} + \beta\hat{\phi}_t,$$

Previous memory

Statistic of current batch

$$P_{t-1} = P_t : \text{Stable} \quad \Leftarrow \beta \to 0$$

$$P_{t-1} \neq P_t : \text{On change.} \leftarrow \beta \to 1$$

$$\beta_t = 1 - e^{-D(\phi_{t-1}, \hat{\phi}_t)}$$

• When to stop? Environment is stable: $\beta_t < \beta_{th}$

• When to restart? Environment changes: $\beta_t > \beta_{th}$

- (Reduce B) Adaptive and online statistic estimation on dynamic distributions for accurate statistics on small batch sizes.
- (Reduce C) Channel-sparse gradients via stochasticallypruned caches.
- (Dynamic L) Cache and train layers on demand.

Benchmark: Accuracy & Memory Efficiency

						Chan	ging	ies.			0130								
	Noise			Blur				Weather				Digital				Acc.	Cache	#fwd #bwd	
Alg.	Gauss.	Shot.	Impul.	Defoc.	Glass.	Motion	Zoom.	Snow	Frost	Fog	Bright.	Contr.	Elast.	Pixel.	JPEG	Avg	Max (Mb)		
	ResNet50; Reset model per perturbation																		
TTT (GN+JT)	31.0	33.6	33.4	28.1	7.8	33.2	36.8	40.9	19.0	51.0	61.8	38.9	49.4	51.7	48.0	37.6	2460×20	21	20
BN	15.5	16.1	16.3	20.0	20.0	28.5	40.0	34.8	35.0	48.5	65.9	24.1	45.8	50.7	41.1	33.5	206	1	0
TTA	4.1	4.9	4.5	12.5	8.2	12.9	25.8	14.0	19.1	21.3	53.0	12.4	14.6	24.6	33.6	17.7	206	64	0
MEMO	7.5	8.7	9.0	19.7	13.0	20.7	27.6	25.3	28.8	32.1	61.0	11.0	23.8	33.0	37.5	23.9	2460×65	65	65
	ResNet50; Lifelong adaptation																		
CoTTA(+GC)	16.9	20.3	22.8	20.6	22.0	31.7	42.4	34.5	34.0	47.2	58.9	24.1	44.5	48.6	42.4	34.1	2845 (1618)	33	1
Tent(+GC)	28.4	34.1	31.7	19.3	12.2	6.9	4.0	1.4	0.8	0.7	0.9	0.4	0.6	0.7	0.6	9.5	2845 (1618)	1	1
Tent+MECTA	24.5	29.5	28.3	22.0	23.5	27.4	37.2	28.2	27.1	36.8	50.7	15.5	38.0	40.2	34.7	30.9	847	1	1
EATA(+GC)	35.0	38.1	36.8	33.8	34.2	47.3	53.2	51.1	45.6	59.7	68.0	44.2	57.2	60.4	54.7	48.0	2845 (1618)	1	0.56
EATA+MECTA	<u>33.7</u>	39.1	37.8	31.7	33.1	$\underline{42.2}$	50.3	46.3	<u>43.0</u>	56.9	65.4	41.2	55.2	58.2	53.7	45.9	<u>847</u>	1	0.56

Changing test-time noise

Best trade-off between memory and accuracy.

MECTA dynamically cache data on demand

Benchmark with Constrained Cache

Better accuracy on all noise, reasonable computation load.

Which component matters more?

Trade-off between robust accuracy and memory (cache size)

MECTA: Memory-Economic Continual Test-Time Model Adaptation

Improve **on-device** machine learning memory efficiency on **changing** environments.

- New Problem: We initiate the study on the memory efficiency of continual test-time adaptation (CTA), revealing the substantial obstacle in practice.
- New Method: We propose a novel method with a simple plug-in MECTA Norm layer that improves the memory efficiency of different CTA methods.
- Better Memory-Robustness Trade-off: Our method maintains comparable performance to full back-propagation methods while significantly reducing the dynamic and maximal cache overheads.

Thank you!

paper

code