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enables knowledge transfer from a
teacher model to a student model without sensitive or private training samples;

(2) Backdoor attacks are one of the major inference-time attacks which can be

pre-implanted in trained models;

- . , Lround truth:
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(3) But, what if meets Poisoned Teachers:

“Can a student trust the kinowledqge Eransferred from

an unkrusted keacher ? “
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(1) Data-Free KD can output a model whose performance (Acc) is to the
Vanilla KD obtained model using clean in-distribution data;
(2) However, Data-Free KD is much more susceptible to poisoned teachers. The

student model ends up being backdoored with a high chance (almost 100%).

{Risks Overview} Bad data supply & supervision.

Generator/

Bad Teacher 7’

OOD Samples

’--\

%

e e

Kisks associated with:

. Bad synthetic inputs - which is the key ditference than the Vanilla

2. Bad supervision from the poisoned teac

. . Bad Student

*

KD

er - even using clean out-of-

distribution data for KD, backdoor knowledge can still be transferred.
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{Empirical Highlights}

(1) Efficacy against different attacks
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(2) Hficacy for different Data-Free KD

o TR Em = - .-
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(a) Shuffling Vaccine @ Risk 1 (b) Self-Retrospection @ Risk 2

Proposed Solution:

. & Risk [: Preliminary identity and removal of
samples that only activate a sparse of neural.

@ Risk Z: Retrospection as a minmax where one

unlearns identified noises that Ieadsntn student (3) behavior deviation:

1
6* = argmin max — » Dgy (S (z|6) ||S (x + 6|6))
=1

60 5EC<€ n “

being conducted whenz_pruper vaccine can be found (a shuftle

Overall: 1.
model that have a large tail-sample ratio); 2. SI is conducted if no SV found or
upon users request (at a cost of averaging a% Acc drop)

Trigger Teacher Student Acc/ASR
Acc/ASR | ZSKT  ZSKT+ABD Clean KD
BadNets (grid) | 92.1/99.9 | 71.9/96.9  68.3/0.7 74.6/4.3 Distillation Teacher Teacher Student Acc/ASR
Trojan WM 93.8/100 | 82.7/93.9  78.2/22.5 77.5/11.1 Method Trigger Acc/ASR | Baseline +ABD
Trojan 3x3 93.4/98.7 | 80.9/96.8  71.7/33.3 72.9/1.7 Trojan WM 03.8/100 | 82.7/93.9 78.2/22.5
Blend 93.9/99.7 | 77.0/744  71.5/23.1  78.0/4.3 ZSKT | BadNets (grid) 92.1/99.9 | 71.9/96.9  68.3/0.7 —
Trojan 8x8 93.7/99.6 | 80.5/57.2  72.6/17.8 75.2/9.3 :
BadNets (sq) | 93.4/97.8 | 80.8/37.8 77.9/1.9(s)  76.2/9.1 CMI B N osion | 583050  maoe
CL 01.2/943 | 76.8/17.5  67.4/102  69.4/2.1 ambicad % ' iy ko
Sig 90.5/97.3 | 77.9/0.0 72.2/0. (s) 77.4/0. 00D Trojan WM 03.8/100 | 82.3/100 62.3/21.8
12_inv 93.9/100 | 82.0/0.3 70.7/1.9(s) 77.2/1.2 BadeNet (grid)  92.1/99.9 | 79.8/99.6  78.2/14.5
10_inv 92.4/99.6 | 72.8/8.3  69.4/0. (s) 79.2/3.7
‘(s)’ indicates Shuffling Vaccine is used instead of the student’s Self-Retrospection.
clrnn'lo WRN16-2 (Teacher) to WRN16-1 (Student)
(3) Hficacy over different datasets
Dataset Teacher Student Teacher Teacher Student Acc/ASR
Arch (size) Arch (size) Trigger Acc/ASR ZSKT +ABD Clean KD
GTSR-B | WRN16-2 (0.7MB) WRNI16-1 (0.2MB) BadNets (grid) | 88.1/98.8 | 87.0/99.5 78.4/13.0 89.8/0.3
WRN16-2 (0.7MB) WRN16-1 (0.2MB) BadNets (grid) | 92.1/99.9 | 71.9/96.9 68.3/0.7 74.6/4.3
CIFAR-10 WRN16-2 (0.7MB) WRN16-1 (0.2MB) Trojan WM 93.8/100 | 82.7/93.9 78.2/22.5 77.5/11.1
WRN40-2 (2.2MB) WRN16-1 (0.2MB) BadNets (grid) | 94.5/100 | 84.2/4.6 76.9/10.7 (s)  72.0/4.7
WRN16-2 (0.7MB) WRN16-1 (0.2MB) Trojan WM 94.5/100 | 87.6/54.5  82.9/5.8 (s) 71.2/5.3

‘(s)’ indicates Shuffling Vaccine is used instead of the student’s Self-Retrospection.

(5) Attacks Visual Examples

(4) Compaonents ablation
SV~ SR | BadNets (grid) Trojan WM
70.7/87.8 82.7/93.9

v 67.2/0.3 79.0/57.0
v 68.3/76.2 79.7/44.1

v v 68.3/0.7 78.2/22.5
Clean KD 74.6/4.3 77.5/11.1

CIFAR-10 WRN16-2 to WRN16-1
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