Federated Adversarial Debiasing for Fair and Transferable Representations

Junyuan Hong¹, Zhuangdi Zhu¹, Shuyang Yu¹, Zhangyang Wang², Hiroko Dodge³, Jiayu Zhou¹

¹ Michigan State University, ² University of Texas at Austin, ³ Oregon Health & Science University

Centralized Learning

Centralized Learning

Federated Learning (FL)

Non-i.i.d. users in FL

Examples:

- Data from different social groups
 - Genders, races
- Data from different sensors
 - Webcam v.s. prof. cam
 - Grey-scale v.s. color images

Representation bias: gray-scale v.s. color digit images (MNIST and MNIST-M) extracted by CNN models.
Credit: Ganin, Y., & Lempitsky, V. (2015). Unsupervised Domain Adaptation by Backpropagation. International Conference on Machine Learning

Group bias results in unfair models

Domain bias results in non-transferable models

Adversarial Debiasing

- Extract representations z=G(x) from two groups. Thus, $z\sim p_1$ or $z\sim p_2$
- Measure the group discrepancy:

$$\mathbf{D}_{p_1,p_2} = \max_{D} \mathbb{E}_{p_1}[\log D(z)] + \mathbb{E}_{p_2}[\log(1-D(z))],$$

• Update encoder to reduce bias

$$G = \arg\min_{G} \mathcal{D}_{p_1, p_2}$$

Adversarial Debiasing

- Extract representations z=G(x) from two groups. Thus, $z\sim p_1$ or $z\sim p_2$
- Measure the group discrepancy:

$$\mathbf{D}_{p_1,p_2} = \max_{D} \mathbb{E}_{p_1}[\log D(z)] + \mathbb{E}_{p_2}[\log(1-D(z))],$$

Update encoder to reduce bias

$$G = \arg\min_{G} \mathcal{D}_{p_1, p_2}$$

Central methods debias aggregated raw data (Ganin, et al. 2015)

FADA debiases aggregated representation data (Peng, et al., 2019)

Desired properties:

- Privacy: Users do not share training data, intermediate representations or sensitive group attributes during learning.
- Autonomous: Users have the freedom to quit the adversarial game during training.
- Satisfiable: Adversarial game should be able to reach an equilibrium.

Desired properties:

- Privacy: Users do not share training data, intermediate representations or sensitive group attributes during learning.
- Autonomous: Users have the freedom to quit the adversarial game during training.
- Satisfiable: Adversarial game should be able to reach an equilibrium.

Property	Central	FADA	FADE		
Privacy	X	×	V		
	(raw data)	(representations & group attributes)			
Autonomous	×	×	√		
Satisfiable	V	V	V		

Method

- Privacy: Each user train discriminators using local data only and encoders are supervised by shared discriminators.
- Autonomous: ...
- Satisfiable: ...

Local discrepancy w/o adversarial data

user 1
$$\mathbf{D}_{p_1,p_2} = \max_{D} \mathbb{E}_{p_1}[\log D(z)] + \mathbb{E}_{p_2}[\log(1 - D(z))]$$

user 2 $\mathbf{D}_{p_1,p_2} = \max_{D} \mathbb{E}_{p_1}[\log D(z)] + \mathbb{E}_{p_2}[\log(1 - D(z))]$
(group 2)

Global discrepancy

average
$$\mathbf{D}_{p_1,p_2} = \max_{D} \mathbb{E}_{p_1}[\log D(z)] + \mathbb{E}_{p_2}[\log(1-D(z))]$$

Method

- Privacy: Each user train discriminators using local data only and generators are supervised by shared discriminators.
- Autonomous: Users are allowed not to upload their local models per iteration.
- Satisfiable: Distribution matching is sufficient for adversarial optimality.

Central discrepancy

Method

- Privacy: Each user train discriminators using local data only and generators are supervised by shared discriminators.
- Autonomous: Users are allowed not to upload their local models per iteration.
- Satisfiable: Distribution matching is sufficient for adversarial optimality.

Estimated discrepancy

$$\tilde{\mathbf{D}}_{p_1,p_2} = \max_{D} \alpha_1 \mathbb{E}_{p_1}[\log D(z)] + \alpha_2 \mathbb{E}_{p_2}[\log(1 - D(z))]$$

Debias representations by estimated discrepancy

$$G = \arg\min_{G} \tilde{\mathbf{D}}_{p_1, p_2}$$

Theorem 4.1. The condition $p_1(z) = p_2(z)$ is a sufficient condition for minimizing $\tilde{\mathbf{D}}_{p_1,p_2}$ and the minimal value is $\alpha_1 \log \alpha_1 + \alpha_2 \log \alpha_2 + (\alpha_1 + \alpha_2) \log(\alpha_1 + \alpha_2)$.

Theoretical Insights

- The estimated discrepancy will be less sensitive to the true distribution difference when two groups are imbalanced.
 - Lower uploading probability
 - Imbalanced numbers of users
- Mitigate the imbalance by squared adversarial loss

$$L_{i,g,2}^{\text{adv}}(D,G) = -\frac{1}{2} \left(L_{i,g}^{\text{adv}}(G,D) \right)^2,$$

- Class-wise non-iid may cause the loss of discrimination after debiasing.
- A class-conditioned regularization will mitigate the issue.

Theorem 4.2. Let ϵ be a positive constant. Suppose $|\log p_1(x) - \log p_2(x)| \le \epsilon$ for any x in the support of p_1 and p_2 . Then we have $\tilde{\mathbf{D}}_{p_1,p_2} = O(\alpha_1 \epsilon/(\alpha_1 + \alpha_2))$ when $\alpha_1 \ll \alpha_2$.

Unsupervised Domain Adaptation (UDA)

Table 1: Averaged classification UDA accuracies (%) on Office and OfficeHome dataset with 3 non-iid target users and 1 source user. Underlines indicate the occurrence of non-converged results. Standard deviations are included in brackets.

Method	$A{ ightarrow}D$	$A{ ightarrow}W$	$D{\rightarrow}A$	$D {\rightarrow} W$	$W {\rightarrow} A$	$W{\to}D$	Re→Ar	Re→Cl	$Re \rightarrow Pr$	Avg.	
Federated methods											
Source only	79.5	73.4	59.6	91.6	58.2	95.8	67.0	46.5	78.2	72.2	
non-iid target users w/ 20 (Office) or 45 (OfficeHome) classes per user											
FADE-DANN	85.4 (1.9)	81.8 (1.8)	43.1 (33)	97.7 (0.5)	64.8 (0.5)	99.7 (0.2)	46.4 (37)	34.9 (27)	78.8 (0.1)	70.3	
FADE-CDAN	92.3 (1.2)	91.6 (0.5)	65.9 (9.3)	98.9 (0.2)	70.2 (0.8)	99.9 (0.1)	70.3 (1.6)	54.9 (4.6)	82.2 (0.1)	80.7	
FedAvg-SHOT	83.6 (0.5)	83.1 (0.5)	64.7 (1.4)	91.7 (0.2)	64.7 (2.2)	97.4 (0.5)	70.7 (0.5)	55.4 (0.5)	80.1 (0.3)	76.8	
iid target users											
FADE-DANN	84.2 (1.5)	81.3 (0.4)	66.3 (0.3)	97.5 (1.2)	59.4 (10.6)	99.9 (0.2)	67.3 (0.9)	51.3 (0.4)	79.0 (0.6)	76.2	
FADE-CDAN	93.6 (0.8)	92.2 (1.3)	71.2 (1.0)	98.7 (0.4)	71.3 (0.7)	100 (0.0)	70.6 (1.3)	55.1 (1.0)	82.3 (0.2)	81.7	
FedAvg-SHOT	96.3 (0.5)	94.3 (1.1)	70.9 (2.0)	98.4 (0.4)	72.7 (0.9)	99.8 (0.0)	74.8 (0.3)	60.0 (0.1)	84.9 (0.2)	83.6	
Central methods											
ResNet [15]	68.9	68.4	62.5	96.7	60.7	99.3	53.9	41.2	59.9	67.9	
Source only [23]	80.8	76.9	60.3	95.3	63.6	98.7	65.3	45.4	78.0	73.8	
DANN [11]	79.7	82.0	68.2	96.9	67.4	99.1	63.2	51.8	76.8	76.1	
CDAN [28]	92.9	94.1	71.0	98.6	69.3	100	70.9	56.7	81.6	81.7	
SHOT [23]	94.0	90.1	74.7	98.4	74.3	99.9	73.3	58.8	84.3	83.1	

Unsupervised Domain Adaptation (UDA) with imbalanced source/target users

- Imbalance results in large adv. loss.
- Squared loss design: further increase the loss value if the loss is large.

$$\begin{split} L_{i,g}^{\text{adv}}(G,D) &= \mathbb{E}_{x \sim p_i(x)} \left[\mathbb{I}(g=0) \log D(G(x)) \right. \\ &+ \mathbb{I}(g=1) \log (1 - D(G(x))) \right], \\ L_{i,g,2}^{\text{adv}}(D,G) &= -\frac{1}{2} \left(L_{i,g}^{\text{adv}}(G,D) \right)^2, \end{split}$$

USPS -> MNIST

Fair learning with imbalanced female/male users

Adult dataset with fairness on male/female groups

Thank You!

Codes: https://github.com/illidanlab/FADE

Acknowledgement

This material is based in part upon work supported by the National Science Foundation under Grant IIS-1749940, EPCN-2053272, Office of Naval Research N00014-20-1-2382, and National Institute on Aging (NIA) R01AG051628, R01AG056102, P30AG066518, P30AG024978, RF1AG072449.

