Federated Robustness Propagation: Sharing Adversarial Robustness in Federated Learning

Junyuan Hong ${ }^{1}$, Haotao Wang², Zhangyang Wang², Jiayu Zhou ${ }^{1}$ ${ }^{1}$ Michigan State University, ${ }^{2}$ University of Texas at Austin

Adversarial Training (AT)
 on Heterogeneous Devices

$$
\ell=\left(\ell_{a}+\ell_{\mathrm{CE}}\right) / 2
$$

$\ell_{\mathrm{CE}}(f(x), y)=-\sum_{t=1}^{c} y_{t} \log \left(f(x)_{t}\right) \quad \ell_{a}(f ; x, y)=\max _{\|\delta\| \leq \epsilon} \ell(f(x+\delta), y)$

- High cost of adversarial training

Increased communication latency.
High energy cost for battery-powered edge devices

- Ubiquitous essence of robustness:

Security in self-driving vehicles
Generalization on mild perturbation.

Federated Robustness Propagation

- Problem setup
- Resources
- Features
- Challenges
- Transferability of robustness; - Efficiency of robustness sharing.

Figure 1: Comparison of robustness on Figure 1: Comparison of robustness on
a varying portion of AT users, where a a varying portion of AT users, where a tributed to 50 users in total and details are in Appendix C.7.

Standard Training Adversarial Training
can afford AT

paper
code

Empirical Results

Ablation Study
Table 1: Ablation of different test-time BNs.

	test BN	weight	Digits						DomainNet						
				All	20	20\%		NIST		All		20\%		Real	
			\|RA	SA	RA	SA	RA	SA	RA	A SA	RA	SA		A SA	
				$\begin{aligned} & 8867 \\ & 0889 \\ & 0 \end{aligned}$	$\begin{aligned} & 741.9 \\ & 9 \end{aligned}$	9	${ }^{34.5}$	584.7				80.3		15.4 65.9	
			62.08	8.08	51.0	83.5	41.5	80.2		. 76		462.		12.856 .1	
0.5 BN_{c} 0.5 $\operatorname{Bran}^{\mathrm{BN}}$ $0.5 \operatorname{tran} . \mathrm{BN}_{a}$		uni $\begin{gathered}\text { uni } \\ \text { cos }\end{gathered}$		2.8 86.7 50.0 87.0 42.2 84.1 35.5 61.4 26.5 61.2 21.0 62.0 2.0 84.9 22.084 .955 .486 .0 51.5 87.2 $35.7 \quad 11.6 \quad 27.561 .326 .0464 .0$ 62.084 .955 .887 .358 .586 .535 .761 .628 .162 .526 .463.											

AT users per domain

Benchmark Results

- Benchmarks of robustness propagation, where we measure the per-epoch computation time (T) by counting $\times 10^{12}$ times of multiplication-or-add operations (MACs) to evaluate the efficiency.

 | FATAvg+DBN | \checkmark | \checkmark | 6.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 FATProx $\quad 58.586 .37 .442 .884 .52 .238 .1844 .12 .224 .847 .11127 .914 .557 .338 .410 .457 .134 .6$

Acknowledgement

This material is based in part upon work supported by the National Science Foundation (IIS-1749940, IIS-2212174, ECCS-2024270), NIH/National Institute on Aging (1RF1AGO72449) and Office of Naval Research (Noo014-20-1-2382).

