
A Differential Privacy Metric702

The (ε, δ)-Differential Privacy is the most widely used pri-703

vacy metric which is defined as704

Definition A.1 (Differential Privacy (Dwork et al. 2006b;
Dwork 2006; Dwork et al. 2006a)). Let Dn be space of
datasets including n samples. A randomized algorithm M :
Dn → Z is (ε, δ)-DP if for all adjacent4 D,D′ ∈ Dn and
for all subset of outputs S ⊆ Z , we have

P (M(D) ∈ S) ≤ eεP (M(D′) ∈ S) + δ.

If δ = 0, then M achieves pure DP which is stronger than705

the case δ > 0. To achieve better properties described in706

Section 3.1, we give a privacy guarantee by a new privacy707

metric and its proofs here.708

A variant of DP is called ω-truncated ρ-Concentrated Dif-709

ferential Privacy (Bun et al. 2018) as follows.710

Definition A.2 ((ρ, ω)-tCDP). Let ω > 1 and ρ > 0. A
randomized algorithm M : Dn → R satisfied (ρ, ω)-tCDP
if, for all adjacent inputs d, d′ ∈ Dn,

Dα(M(d)‖M(d′)) ≤ ρα, ∀α ∈ (1, ω)

where Dα(·‖·) denotes the Rényi divergence (Rényi 1961)711

of order α.712

The (ρ, ω)-tCDP provides nice properties for private learn-713

ing as discussed in Section 3.1. The general usage can be714

found in the Algorithms 1 and 2. However, the privacy pa-715

rameters, (ρ, ω), have to be carefully initialized and chosen716

to satisfy their constraint.717

In this section, we first summarize the properties of (ρ, a)-718

ctCDP and then provide proofs based on the theoretic results719

of (ρ, ω)-tCDP. Also, we show how to use the properties720

of the ctCDP to initialize the privacy parameters and add721

essential constraints in detail.722

A.1 Properties of (ρ, a)-ctCDP723

We suggest an a-constrained truncated ρ-CDP (or (ρ, a)-724

ctCDP) based on the (ρ, ω)-tCDP to provide a minimal ex-725

ample with tight composition bound, linear composition func-726

tion and a simple Gaussian mechanism. It is defined in Defi-727

nition 3.1. The proposal originates from the scenario where728

the privacy budget is constrained as a constant, typically as729

(ε, δ)-DP, and a series of properties are required for scalable730

gradient perturbation (Algorithm 1). Other than ctCDP, more731

complicated privacy metric can be used on demand. Here, we732

first summarize the theoretic results of ctCDP with proofs733

in the following sections. Note that most of the results are734

identical to tCDP by fixing ω as ωa. The major difference lies735

on the Lemma A.5 where the noising mechanism is assumed736

to be derived from zCDP, resulting in a different constraint737

on ρ.738

Lemma A.1 (Relation to (ε, δ)-DP). Suppose a randomized739

algorithm M satisfies (ρa, a)-ctCDP with a = log(1/δ)/ε740

and ρa defined in Definition 3.1. Then M satisfies (ε, δ)-DP.741

4By adjacent, we mean the two datasets have only one different
entry at most.

Lemma A.2 (Relation to tCDP). Suppose a randomized al- 742

gorithm M satisfies (ρ, a)-ctCDP. Then M satisfies (ρ, ωa)- 743

tCDP where ωa is defined in Definition 3.1. 744

Definition A.3 (Sensitivity). Given f : Dn → Rd, the L2

sensitivity of f , denoted by ∆2(f) (or simply ∆) is defined
as:

∆2(f) = max
D,D′

‖f(D)− f(D′)‖2 ,

where D, D′ are adjacent datasets. 745

Lemma A.3. The sensitivity of ‖∇t‖22 is ∆2(‖∇t‖22) = 746

(2|Dt| − 1)C2
g . 747

Proof. By definition,
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whose norm is lower than or equal to (2|Dt| − 1)C2
g . Thus, 748

∆2(‖∇t‖22) = (2|Dt| − 1)C2
g . 749

Lemma A.4 (Composition & Post-processing). Let two 750

mechanisms be M : Dn → Y and M ′ : Dn × Y → Z . 751

Suppose M satisfies (ρ1, a)-ctCDP and M ′(·, y) satisfies 752

(ρ2, a)-ctCDP for ∀y ∈ Y . Then, mechanism M ′′ : Dn → Z 753

(defined by M ′′(x) = M ′(x,M(x))) satisfies (ρ1 + ρ2, a)- 754

ctCDP. 755

The Lemma A.4 is directly given by tCDP when we trans- 756

form ctCDP to tCDP with fixed ωa (see Lemma A.2). 757

Instead of deriving a canonical noise mechanism for the 758

ctCDP, we directly use the Gaussian mechanism theorem of 759

zCDP and amplify its privacy cost in the form of ctCDP by 760

subsampling. 761

Lemma A.5 (Gaussian mechanism for ρ-zCDP (Bun and
Steinke 2016)). Let f : Dn → Z have sensitivity ∆. Define
a randomized algorithm M : Dn → Z by

M(x)← f(x) +N (0, σ2).

Then M satisfies ∆2

2σ2 -zCDP. 762



Lemma A.6 ((ρ, a)-ctCDP from ρ-zCDP by privacy amplifi-
cation through subsampling). Let ωa = (1+a)+

√
a(a+ 1).

Let ρ, q ∈ (0, 0.1], n,N ∈ Y with q = n/N (sampling rate)
and satisfy

log(1/q) ≥ 3ρ(2 + log2(1/ρ)), (9)

0 ≤ ρ < min

{
log(1/q)

4ωa
,
ρa

13q2

}
. (10)

Let M : Dn → R satisfy ρ-zCDP. Define the mechanism763

Ms : DN → Y by Ms(x) = M(xS), where xS ∈ DN is the764

restriction of x ∈ DN to the entries specified by a uniformly765

random subset S ⊆ [N ] with |S| = n.766

The algorithm Ms : DN → Y satisfies (13q2ρ, a)-ctCDP.767

Remarkably, the Lemma A.6 assumes the sub-routine is768

ρ-zCDP. Since the subsampling-based privacy amplification769

happens after the noise mechanism, it is natural to use the770

Gaussian mechanism (Lemma A.5) which results in a zCDP771

privacy cost.772

These privacy guarantees are derived from (ρ, ω)-tCDP773

by constraining the range of ρ and ω where ω is simply a774

constant. By sacrificing the flexibility of the privacy parame-775

ters, we can get a single parameter metric which is simple in776

notation. Moreover, by fixing the ω, we will be able to update777

the privacy parameters by gradient descent in meta-learning5.778

In this paper, we apply the (ρ, a)-ctCDP to the gradient779

perturbation scenario (Algorithm 1) where the total privacy780

cost ρtot is constrained by (ε, δ)-DP. A completed pipeline781

of private learning includes initialization of the parameters782

based on the given privacy budget and the protected learning783

(Algorithm 1). For the convenience of implementation, we784

provide the detailed steps of the initialization in Algorithm 3785

as supplementary to private learning. The algorithm is based786

on the ctCDP with subsampling. If subsampling is not used,787

only the step budget needs to be modified as ρ0 = ρ′0 with788

the upper bound ρub = ρa.789

A.2 Budget constraint from standard DP790

Our motivation for proposing ctCDP is that existing private791

learning methods are typically compared by performance792

under a given privacy budget. Therefore, we first introduce a793

budget constraint using the standard DP, which is translated794

as bounds on the tCDP parameters.795

Theorem A.1 (Transformation of tCDP to DP). Suppose M
satisfy (ρ, ω)-tCDP. Then, for all δ > 0 and all 1 < α ≤ ω,
M satisfies (ε, δ)-DP with

ε =

{
ρ+ 2

√
ρ log(1/δ), log(1/δ) ≤ (ω − 1)2ρ

ρω + log(1/δ)
ω−1 , log(1/δ) ≥ (ω − 1)2ρ

When ε and δ are fixed, we want to maximize the available
budget ρ and fix ωa. We consider log(1/δ) ≥ (ω − 1)2ρ to
find the upper bound of ρ when ω can be maximized, as well.
First, we solve the linear function of ρ, i.e., ε = ρω+ log(1/δ)

ω−1 ,
given some ω. Let

a , log(1/δ)/ε

5Note that the composition of ω in (ρ, ω)-tCDP is not continu-
ously differentiable if all sub-mechanisms have varying ω.

Algorithm 3 Private learning initialization.
(ε, δ)-DP, the number of learning iterations (T ) estimated
from non-private algorithms.

1: Transformation from DP to ctCDP (Lemma A.1): a←
log(1/δ)/ε and compute ρa and ωa by Definition 3.1

2: ρtot ← ρa.
3: Estimate step budget by uniformly decomposing ρtot into
T steps: ρ′0 ← ρtot

T (Lemma A.4).
4: Estimate a batch sampling rate q, e.g., q ← (

√
|D| +

10)/|D|.
5: ρ0 ← ρ′0

13q2 (subsampling by Lemma A.6)
6: If ρ0 and q do not statisfy Eqs. (9) and (10), re-estimate
q by choosing the smaller solution to

log(1/q) = 3
ρtot

13q2
(2− log2(

ρ′0
13q2

))

ρ′0
13q2

=
log(1/q)

4ωa
.

Then re-compute ρ0 using the new q.
7: Get the upper bound of step budgets: ρub (Eq. (10)).
8: Compute noise scale by Lemma A.5:
9: estimated step noise: σg = ∆/

√
2ρ0

10: step noise lower bound: σmin = ∆/
√

2ρub
11: Compute batch size |Dt| ≡ bqnc.
12: Output: ρtot, σg , σmin, q, |Dt|

and denote the solution as

ρtCDP =
ε

ω

(
1− log(1/δ)/ε

ω − 1

)
=
ε(ω − (a+ 1))

ω(ω − 1)
. (11)

Now, we substitute the ρtCDP into log(1/δ) ≥ (ω − 1)2ρ to
obtain

aω ≥ (ω − 1)(ω − (a+ 1))

⇒ (1 + a)−
√
a(a+ 1) ≤ ω ≤ (1 + a) +

√
a(a+ 1)

By the definition of tCDP, ρtCDP ≥ 0 and ω > α > 1. Thus,

ω > 1 and ω ≥ a+ 1.

Because a+ 1 > (1 + a)−
√
a(a+ 1) and a > 0, the only

solution to log(1/δ) = (ω − 1)2ρ is the upper bound. Now,
we denote the upper bound of ω as

ωa , (1 + a) +
√
a(a+ 1)

and substitute it into Eq. (11) to get

ρa , ε

√
a(a+ 1)

((1 + a) +
√
a(a+ 1))(a+

√
a(a+ 1))

(12)

which is also the solution of ε = ρ+ 2
√
ρ log(1/δ). 796

Until now, we finish the proof of the bounds in Defini- 797

tion 3.1. In addition, it is straightforward to get that (ρa, ωa)- 798

tCDP is equivalent to (ρa, a)-ctCDP. Thus, we have the 799

Lemma A.1. We can further extend it for ρ < ρa. 800



Lemma A.7 ((ρ, a)-ctCDP to (ε, δ)-DP). Suppose a random-
ized algorithm M satisfy (ρ, a)-ctCDP for 0 < ρ ≤ ρa and
a > 0, then M satisfies (ε, δ)-tCDP with

ε =
(ωa − 1)ωa
ωa − a− 1

ρ, δ = exp(−aε).

A.3 Noise mechanism801

The canonical noise for tCDP is a Gaussian noise reshaped802

by a sinh function. We restate the theorem by rearranging the803

variables.804

Theorem A.2 (Sinh-Normal mechanism for (ρ, ω)-tCDP
(Bun et al. 2018)). Let f : Dn → Z has sensitivity ∆.
Let ρ = 8∆2

σ2 , ω satisfy 1
4ω2 ≤ ρ < 16 and A = 8∆ω. Define

a randomized algorithm M : Dn → Z by

M(x)← f(x) +A arsinh(
1

A
N (0, σ2)).

Then M satisfies (ρ, ω)-tCDP.805

If ω → ∞, then A → ∞ in which case the (ρ, ω =806

∞)-tCDP is just ρ-zCDP and the Sinh-Normal distribution807

degrades as the normal distribution. However, due to the808

truncation of ω, the privacy cost, i.e., 8∆2

σ2 , is not as optimal809

as ρ-zCDP. Therefore, we use the noise mechanism of ρ-810

zCDP (Lemma A.5) when ω →∞.811

A.4 Privacy amplification by subsampling812

In stochastic gradient descent, a batch of data subsampled813

from the whole dataset is used to update models. It is criti-814

cal for implementing scalable learning algorithms. Because815

of the randomness of subsampling, it provably reduce the816

privacy cost. Technically, there are two ways to subsample817

the batch. One is random sampling without replacement or818

reshuffling (RF) which is widely used in the non-private deep819

learning. Yu et al. (2019) proved the composed privacy cost820

is the maximum of batch costs in one RF epoch. Numerically,821

each batch is qρ-zCDP if the full batch cost is ρ and batch822

sample rate is q. In this case, the dynamic budget alloca-823

tion for batches within one epoch is always worse than the824

uniform schedule.825

The other strategy is the random sampling with replace-826

ment (RS), for example, in SGD-MA for the private deep827

learning (Abadi et al. 2016). Compared to RF, RS injects828

more randomness and therefore scale down the privacy cost829

more (Yu et al. 2019), for example, a q2 factor in the MA.830

The lack of privacy amplification for RS motivates the de-831

velopment of extensions. Both tCDP (Bun et al. 2018) and832

the modified zCDP (Yu et al. 2019) spot the issue theoreti-833

cally and provide similar solutions by truncating the order of834

Rényi divergence. A privacy amplification of tCDP is given835

Theorem A.3.836

Theorem A.3 (Privacy amplification by subsampling for837

(ρ, ω)-tCDP). Let ρ, q ∈ (0, 0.1] and positive integers n,N838

with q = n/N and log(1/q) ≥ 3ρ(2 + log2(1/ρ)). Let M :839

Dn → R satisfy (ρ, ω′)-tCDP for ω′ ≥ 1
2ρ log(1/q) ≥ 3.840

Define the mechanism Ms : DN → Y by Ms(x) = M(xS),841

where xS ∈ DN is the restriction of x ∈ DN to the en- 842

tries specified by a uniformly random subset S ⊆ [N ] with 843

|S| = n. 844

The algorithm Ms : DN → Y satisfies (13q2ρ, ω′′)-tCDP 845

for ω′′ = log(1/q)
4ρ . 846

In comparison, the modified zCDP does not have a strict 847

theoretic proof of the scale factor of the privacy cost but 848

empirically shows that q2ρ works for a wide range of ρ. Here, 849

we use tCDP to derive the range of privacy parameters. 850

In Theorem A.3, ω′′ is a variable depending on the ρ rather 851

than ω′. Thus, we let ω′ → ∞ to degrade (ρ, ω′)-tCDP as 852

ρ-zCDP when ρ ∈ (0, 16). 853

Recall our target is to simplify the tCDP by eliminat-
ing ω. Because the subsampled mechanism also satisfies
(13q2ρ, ωa)-tCDP if ωa ≤ ω′′, we constrain ρ as

ρ ≤ min

{
log(1/q)

4ωa
,

log(1/q)

6
,
ρa

13q2

}
(13)

where ρa
13q2 comes from the constraint of (ρ, a)-ctCDP on 854

13q2ρ. Typically, when ωa > 1.5, the log(1/q)/6 can be 855

ignored. Because 1.5 is too small to reach for ωa in practice, 856

we may assume it is satisfied generally. 857

B Methodology supplementaries 858

B.1 Model-based private learning 859

Here, we provide the formal statement and proof of Theo- 860

rem 4.1. 861

Theorem B.1 (Privacy guarantee of model-based gradient 862

descent). Suppose a gradient-based algorithm Algorithm 1 863

is protected by Algorithm 2 and σ(·) and π(·) are crafted 864

fully independently from the private data. The output of the 865

algorithm, i.e., θT (assuming the loops stop at step T ), is 866

ρ̂-ctCDP where ρ̂ ≤ ρtot, if fC(·), fS(·) and ρ(·) are defined 867

based on ctCDP properties (Lemmas A.4 to A.6). 868

Proof. For brevity, we omit the a in notations. Denote 869

the sub-routine defined in Algorithm 2 is gt, ρt, zt+1 = 870

Mt(∇t, zt) where zt denotes the hidden states. Then each 871

iteration of private learning in Algorithm 1 can be abstracted 872

as θt+1, zt+1 = At(θt, gt, zt, ρt). Because of the linear com- 873

position, Lemma A.4, the condition fC(ρ1:t) > ρtot can be 874

justified by ρresidual > 0 where ρresidual ← ρresidual − ρt. 875

By rearranging variables, without changing the meaning 876

of the mappings, we can write the iteration as θt+1, zt+1 = 877

At(Mt(θt, zt)) where d denotes the private batch data. Sup- 878

pose (θt, zt) is ρ̂t-ctCDP w.r.t. the dataset and the mapping 879

Mt(·, ·) is ρt-ctCDP w.r.t. the dataset. Thus, according to 880

Lemma A.4, θt+1, zt+1 = At(Mt(θt, zt)) is ρ̂t+1-ctCDP 881

where ρ̂t+1 = ρ̂t + ρt. 882

Next, we show Mt(·, ·) is ρt-ctCDP for t ≤ T and some
ρt < ∞. According to Lemma A.5, the noised gradient is
1/2σ2

t -zCDP and the noised gradient norm is 1/2σ2
g-zCDP

(note its sensitivity is proved by Lemma A.3). Further using
the Lemma A.6, we can compute

ρt = 13q2

(
1

2σ2
t

+
1

2σ2
g

)
<∞



if σt and σg are non-zero.883

Now we show A1(M1(θ1, z1)) is ρ1-ctCDP. Typically,884

θ1, z1 are randomly initialized or constantly zero which885

are independent from the dataset. Therefore, (θ1, z1) is886

0-ctCDP. By Lemma A.4, because M1(·, ·) is ρ1-ctCDP,887

A1(M1(θ1, z1)) is ρ1-ctCDP.888

In summary, the output of model-based private learning,
i.e., θT = AT (MT (θT , zT )) (omitting zT+1), is ρ̂T -ctCDP
where

ρ̂T = ρ̂T−1 + ρT =

T∑
i=1

ρi ≤ ρtot.

889

B.2 Augmented Lagrangian algorithm890

Given µ0 > 0, tolerance τ0 > 0 (Nocedal and Wright 1999)891

(Chapter 17), starting point σ0 and λ0, the variables are itera-892

tively updated:893

1. Line search s such that σ+ is an approximate minimizer
of Laug (the gradient norm is less than τk):

σ+ = σ − s
[
∇σF (T, σT ) +

dh

dσ
(z − h(σ)/µ)

]
(14)

2. If the final convergence criteria satisfied, stop with approx-894

imate solution σ895

3. Update Lagrange multiplier:

z+ = z − h(σ+)/µ (15)

4. Choose new penalty parameter µ+ ∈ (0, µ).896

where s is the step size and we let σ be a vec-897

tor [σ1, · · · , σT ]> or constant scalar. The update on σ+898

can be replaced by another line search, i.e., σ+ =899

arg minσ′ Larg(σ′(s)) where σ′(s) is given by Eq. (14). In900

practice, we want to avoid the second time of unrolling σ901

because it is required in Eq. (15). To fix this issue, we proceed902

with steps 3, 4, first and then finally perform step 1.903

B.3 Analysis of the gradients904

A generic gradient descent method can be summarized as a
set of sequential updates on the parameter θ, i.e.,

θT = θ1 +

T−1∑
t=1

gt

= θ1 +

T−1∑
t=1

π(∇t + σtνt), νt ∼ N (0, I).

Assume ∂σt
∂σt−1

= 0 and ∂gt
∂σt−1

= 0. Therefore, we can com-
pute the gradient w.r.t. σt as

∂fT
∂σt

=
∂∇̃t
∂σt

∂gt

∂∇̃t
∂fT
∂θT

= ν>t
∂π(∇̃t)
∂∇̃t

∇T (16)

=
1

σt
(∇̃t −∇t)>

∂π(∇̃t)
∂∇̃t

∇T

≈ 1

σt
(π(∇̃t)− π(∇t))>∇T (17)

where ∇̃t = ∇t + σtνt and we approximate in the last 905

term by Taylor expansion. Taking expectation, we can see 906

from Eq. (16) that the gradient is related to the covariance 907

between the noise νt and the final gradient ∇T . Intuitively, 908

if ∂σt
∂σt−1

= 0 and ∂gt
∂σt−1

= 0, the gradient updates on σt will 909

increase a lot when t� T . Together with the observation in 910

Eq. (17), it can be witnessed that the scheduler is decided by 911

the denoising effect of the π. 912

In our implementation, we use an RNN to model the π and 913

σ which could greatly denoise the updates according to its 914

memory. Furthermore, in Appendix B.6, we give an exact 915

bound of the utility which closely relate the scheduler and 916

projector together. 917

B.4 Optimality Stability 918

The optimality of learning scheduler is achieved by vanishing 919

the gradient in Eq. (3). If both of the two terms in Eq. (3) are 920

zero, the second term will be quite unstable since the ft and 921

F̂ are random variables. Especially when the expectation of 922

the gradient is estimated by only few samples, the instability 923

will be a major issue. Here, we focus on the second term 924

and analyze the probability for it to be zero. Assume the 925

optimization of f has converged and the expectation of the 926

gradient is estimated by one sample. 927

Non-batch algorithms. An optimal case for the non-batch
algorithm is ft = ft′ for all t, t′ ∈ T where It 6= 0 and
It′ 6= 0. By convergence, we assume the expected loss values
cannot be decreased any more since the private updates are
totally governed by the noise instead of gradients. Therefore,
we can further assume the losses are identically independently
distributed with variance Var[ft] ≡ σ2

f . According to the
Chebyshev’s inequality, we have, for a constant ξ,

P (|ft′ − ft| > ξ) ≤
2σ2

f

ξ2

which does not vanish since σf is non-zero due to private 928

noise. That means only using one optimization process can 929

barely reach the zero gradient condition. 930

Batch algorithms. The condition ft = ft′ can be easily
extended to the batch case, i.e.,

1

|Bj |
∑
t∈Bj

ft =
1

|Bi|
∑
t∈Bi

ft (18)



for all i, j ∈ TB where Ii 6= 0 and Ij 6= 0. Therefore,

P

∣∣∣∣∣∣ 1

|Bi|
∑
t∈Bj

ft −
1

|Bi|
∑
t∈Bi

ft

∣∣∣∣∣∣ > ξ

 ≤ 2σ2
f

ξ2|Bi|

which has a smaller failure probability if |Bi| > 1. In other931

words, the batch algorithm is stabler.932

B.5 Batch Augmented Lagrangian Algorithm933

With the basic augmented objective Eq. (2), we can extend it
to the batch case, i.e.,

Laug
b (σ; rb) = E[F̄i]− zbhb +

‖hb‖22
2µb

where F̄i is the batch-averaged loss defined in Eq. (5). After
decomposing the budget constraint into batches, the aug-
mented objective on the whole optimization process has to
be replaced by

Laug
b (σ, r; ρtot) =

B∑
b=1

Laug
b (σ; rb)− zrhr +

‖hr‖22
2µr

,

which constrains the b-th-batch privacy cost by rb and the934

overall cost by ρtot. Note that zb will be gradually reduced935

to zero when the batch constraint is getting tighter. With the936

Lagrangian multiplier zb, the batch scheduler will be allowed937

to fetch needed budget slightly ignoring the constraint rb.938

Therefore, we can define ρ̂b = fC({ρ(σt)}t∈Bb) − zbµb to939

be the batch privacy cost supplemented by the Lagrangian940

multiplier.941

With the constraint decomposition, we can update the σ
only using one batch loss Laug

b (σ; rb) independently if rb is
fixed. Then, we update r by optimizing Eq. (6), i.e.,

Laug(r; ρtot) =

B∑
b=1

‖ρ̂b − rb‖22
2µb

− zrhr +
‖hr‖22
2µr

We conceptually illustrate the enforcement of constraints942

between batch budget rb and the global budget ρtot in Fig. 5.943

The global budget allocation will be enforced to align the944

total budget. However, the relation between the batch cost945

and the batch budget are bi-directions. When we optimize946

w.r.t. r, the rb will also be encouraged to align the ρ̂b. When947

we optimize w.r.t. ρt in batch b, the batch privacy cost will948

be enforced to match the budget rb.949

In the unconstrained batch algorithm, we will use an one-950

pass fashion to update the meta-model, i.e., the optimizer.951

That means we do not need to store any batch data (except952

for the meta-model) that has been used, which could greatly953

reduce the space complexity. However, for budget constrained954

L2P, we cannot directly drop the used batches, since the batch955

state is essential to check if we need to adjust the constraint956

to fulfill the budget requirement. In Fig. 5, the dependency is957

represented by the interaction between the batch privacy cost958

and the constraint.959

Rather than a one-pass method, we suggest a two-pass960

way to update the parameters. First, we update the meta-961

models with one pass. Second, by fixing the meta-models,962

we unroll the protected learning, update and store ρ̂b, zb and963

µb. With the recorded data, we minimize Laug(r; ρtot) w.r.t. r964

and update corresponding AL variables.965

⇢̂b

rb

⇢tot

Batch b

Figure 5: Illustration of the privacy budget constraint in
batches. We strip the output of the protectors to be only
the privacy costs which are composed into the batch cost ρ̂b
supplemented by the Lagrangian multiplier. The red arrows
between rb and ρ̂b are the interaction during L2P optimiza-
tion where they will both be forced to match the value of the
other.

B.6 Optimality analysis 966

In this paper, we cast the searching for the optimal scheduler
as a learning problem. Formally, we minimize the objective:

E[F̂ (σ)] = E

[∑T
t=1 Itft∑T
t=1 It

]
.

We first assume It is a general weight function varying by t.
Recall the gradient of F̂ (σ) w.r.t. σ (Eq. (3)) is

∂F̂ (σ) =

∑T
t=1 It∂ft∑T
t=1 It

+

∑T
t=1(ft − F̂ )∂It∑T

t=1 It
. (19)

By vanishing the gradient, we can get the optimal condition 967

of the L2P objective. 968

We restrict the non-zero range of It within [Tρ − 1, Tρ]. 969

Define the weight α = ITρ−1/(ITρ−1 + ITρ). 970

We first summarize the major results in Theorem B.2, with 971

which we can get an approximated convergence guarantee 972

to some (local or global) solution of our objective f . It gives 973

us the insight that the final gradient norm is upper bounded 974

by the covariance between the accumulated noise variables 975

(transformed by ∂gt
∂∇̃t

) and the final gradient. The upper bound 976

will be improved when we train the projector on a fixed 977

scheduler. In short words, to improve the utility, the projector 978

training have to denoise the protected updates which reduces 979

the covariance between the νt and the gt. And the covariance 980

between νt and ft+1 is reduced meanwhile. As a result, we 981

will see CTρ−1 approaching zero. 982

Definition B.1 (L-smooth function). A differentiable objec-
tive function f : Θ×X → R is L-smooth over θ ∈ Θ with
respect to the norm ‖·‖ if for any x ∈ X and θ1, θ2 ∈ Θ, we
have:

‖∇f(θ1, x)−∇f(θ2, x)‖∗ ≤ L ‖θ1 − θ2‖ ,
where ‖·‖∗ is the dual norm of ‖·‖. If ‖·‖ is l2-nrom, this
yields

f(θ1, x)− f(θ2, x) ≤ ∇>f(θ2, x)(θ1 − θ2) +
L

2
‖θ1 − θ2‖2 .

Theorem B.2 (Utility bound of a stationary L2P protector).
Suppose f is L-smooth and σ is independent from the noise



variables νt. If the σ is a stationary point of the constrained
optimization problem, the following is satisfied:

E
∥∥∇Tρ−1

∥∥2 ≤ σ2
ζTρ−1

p− 2L

Cσ
(αCTρ−1 + (1− α)CTρ),

(20)

where Cσ is a constant depending on the scheduler σ983

(Eq. (24)), CT represents the covariance between the noise984

and the true gradient (Eq. (32)) and σζTρ−1
is the upper985

bound of reduced noise variance (Eq. (27)).986

Proof. Generally, we assume the It be a function of ht whose
gradient is

∂It =
∂It
∂σ

=
∂It
∂ht

∂ht
∂σ

.

Let us first look into ∂ht
∂σt

which is

∂ht
∂σ

=

t∑
τ=1

∂ρτ
∂στ

∂στ
∂σ

= −
t∑

τ=1

∆2

σ3
τ

∂στ
∂σ

= −
t∑

τ=1

2ρτ
στ

∂στ
∂σ

∂ht
∂σ

=
∂ht−1

∂σ
− 2ρt

σt

∂σt
∂σ

if the ctCDP is utilized. Because It is always centered around987

some real value t0 for ht0 = 0 (by continuous approxima-988

tion), we may assume ∂It
∂ht

of different signs on the different989

sides of t0.990

Let the gradient be zero and rearrange the variables.

1

ZT

T∑
t=1

It∂ft = − 1

ZT

T∑
t=1

(ft − F̂ )∂It (21)

where ZT =
∑T
t=1 It. Let Tρ be the integer such that hTρ =991

ξ > 0 and hTρ−1 = ξ′ = ξ − ρT < 0. Denote the left-hand-992

side and right-hand-side of Eq. (21) as lhs and rhs.993

We restrict the non-zero range of It within [Tρ − 1, Tρ].
Then,

ITρ = 1− γhTρ = 1− γξ
ITρ−1 = 1 + γhTρ−1 = 1 + γξ′ = 1 + γξ − γρTρ

whose summation is 2 + γ(ξ′− ξ) = 2− γρTρ and gradients
are:

∂ITρ = −γ ∂hTρ
∂σ

= γ

Tρ∑
τ=1

2ρτ
στ

∂στ
∂σ

(22)

∂ITρ−1 = γ
∂hTρ−1

∂σ
= −γ

Tρ−1∑
τ=1

2ρτ
στ

∂στ
∂σ

. (23)

Since α = ITρ−1/(ITρ−1 + ITρ),

rhs = − 1

ZT

T∑
t=1

(ft − F̂ )∂It

= − 1

ZT
[(1− α)∂ITρ−1 − α∂ITρ ](fTρ−1 − fTρ)

If σ is independent from the noise variables νt, e.g., uniform
schedule, the coefficient is a constant, i.e.,

Cσ = − 1

ZT
[(1− α)∂ITρ−1 − α∂ITρ ] (24)

based on which we can get the expectation,

E[rhs] = CσE[fTρ−1 − fTρ ]. (25)

If f is L-smooth (Definition B.1),

E
[
fTρ − fTρ−1

]
≤ E[∇>Tρ−1gTρ−1 +

L

2

∥∥gTρ−1

∥∥2
].

Define ζT , LgT +∇T . Since π is just a variant of the SGD,
the direction of gT should be opposite to the∇T . Therefore,

ζt = L(π(∇t + σtνt)−
∇t
L

), (26)

which represents the difference between the projected updates
(gT ) and the gradient descent update with the step size 1

L .
A rational guess is that the ζTρ−1 is the residual noise noise
after the denoising operation, π. Thus, it is rational to assume
the E

∥∥ζTρ−1

∥∥2
is bounded as

E
∥∥ζTρ−1

∥∥2 ≤ σ2
ζTρ−1

p (27)

for some parameter σζTρ−1
depending on the scheduler where

p is the dimension of θ. Then

gt = − 1

L
∇t +

1

L
ζt,

which leads to

E
[
fTρ − fTρ−1

]
≤ − 1

2L
E
∥∥∇Tρ−1

∥∥2
+

1

2L
E
∥∥ζTρ−1

∥∥2

≤ − 1

2L
E
∥∥∇Tρ−1

∥∥2
+
σ2
ζTρ−1

p

2L
.

Thus,

E
∥∥∇Tρ−1

∥∥2 ≤ σ2
ζTρ−1

p+ 2LE
[
fTρ−1 − fTρ

]
= σ2

ζTρ−1
p+ 2LE[rhs]/Cσ. (28)

Thus, we complete the discussion of the rhs. 994

To the left-hand-side of Eq. (19), we first calculate the
derivatives of the loss functions,

∂fT =

(
T−1∑
t=1

∂σt
∂σ

ν>t
∂gt

∂∇̃t

)
∇T . (29)

Define a random variable as

V >T ,
T∑
t=1

∂σt
∂σ

ν>t
∂(−gt)
∂∇̃t

, (30)

where the negative sign is added because gt is usually the
opposite to the ∇̃t, for example, gt ∝ −∇̃t in SGD. Now we
substitute Eqs. (29) and (30) into Eq. (19) to obtain

lhs = −αV >Tρ−2∇Tρ−1 − (1− α)V >Tρ−1∇Tρ .



For brevity, we rewrite the expectation as

E[lhs] = −αCTρ−1 − (1− α)CTρ , (31)

where we define

Ct = E[V >t−1∇t] =

p∑
i=1

Cov(Vt−1,i,∇t,i), (32)

where we utilize EVT−1 = 0 because νt is an i.i.d. Gaussian995

random vector. Therefore, CT represents the covariance be-996

tween two vectors and will be zero only when the two vectors997

are uncorrelated. Combining Eqs. (25), (28) and (31), we can998

get Eq. (20).999

Uniform scheduler. We assume the σt ≡ σ where the
scheduler degrades as a constant σ. Therefore, with Eqs. (22)
and (23), we have

Tρ = dρtot/ρe , ξ = ρTρ − ρtot

ITρ = 1− γξ, ITρ−1 = 1 + γξ − γρ

∂ITρ = γTρ
2ρ

σ
, ∂ITρ−1 = −γ(Tρ − 1)

2ρ

σ

where ρ = ∆2/2σ2. In addition, we have

fTρ − F̂ = α(fTρ − fTρ−1)

fTρ−1 − F̂ = −(1− α)(fTρ − fTρ−1).

Substitute what we have into Eq. (21) giving

rhs =
1

ZT
[αTρ + (1− α)(Tρ − 1)] γ

2ρ

σ
(fTρ−1 − fTρ)

= Cσ(fTρ−1 − fTρ),
where we update the constant Cσ from Eq. (24) as

Cσ =
Tρ − (1− α)

2− γρ
2ργ

σ
.

If γ ∈ (0, 2/ρ), then Cσ > 0. In our implementation, the1000

condition always holds since γ = 1/ρtot < 2/ρ.1001

Taking the expectations of lhs and rhs, we have:

−αCTρ−1 − (1− α)CTρ = CσE[fTρ−1 − fTρ ], (33)

where CT is given by substituting ∂σt
∂σ = 1 into Eq. (30) and

its definition, i.e.,

CT = E

[
T−1∑
t=1

ν>t
∂(−gt)
∂∇̃t

∇T
]
.

Analysis of batch algorithm. Recall the objective for the
batch algorithm (Eq. (8)) is

Laug(r) =

B∑
b=1

1

2µb
‖ρ̂b − rb‖22 +

∑
b∈TB IbF̄i∑
b∈TB Ib

where ZB =
∑
b∈TB Ib and we use Ib to denote I(hb).

Generally, we assume the batch budget is scheduled by pa-
rameterized model r(·) or r for simplicity, e.g., LSTMs. In

addition, assume ∆B = 1, α = IBρ−1/IBρ−1 + IBρ . Van-
ishing ∂Laug

∂r causes

B∑
b=1

1

µb
(rb − ρ̂b)

∂rb
∂r

= −
∑
b∈TB (F̄b − F̂ )∂Ib

ZB
, (34)

where ZB =
∑
b∈TB Ib and we define the notation xtb =

1
m

∑
t∈Bb xt for any variables xt related to the step t. In

addition, we need to make the gradient of batch objective be
zero, i.e.,

0 =
1

m

∑
t∈Bb

∂ft
∂σ

+
1

mµb
(ρ̂b − rb)

∑
t∈Bb

∂ρt
∂σ

, (35)

where we let the batch size, |Bb|, be m for any b. If the 1002

equalities hold in Eqs. (34) and (35), we can extend non- 1003

batch utility bound, Theorem B.2, to the batch version in 1004

Theorem B.3. Compared to the non-batch result, the batch 1005

utility bound is extended by the average of steps in batches. 1006

For example, C is replaced by C. 1007

Theorem B.3 (Utility bound of batch L2P protector). If f
is L-smooth and σ and r are independent from the noise
variables νt, then we have:

E‖∇t‖2
Bρ−1

≤ pσ2
ζt

Bρ−1 − 2L

Cr

B∑
b=1

C′t
b

C ′σ,t
b

∂rb
∂r

, (36)

where Cσ,b is a constant depending on the scheduler σ and 1008

the batch b (Eq. (42)), Cr is a constant depending on the 1009

batch scheduler r, Ct represents the covariance between the 1010

noise and the true gradient (Eq. (32)), and σζt is the upper 1011

bound of reduced noise variance (Eq. (27)). 1012

Proof. We can easily get the derivative ∂Ib based on
Eqs. (22) and (23):

∂IBρ = γ

Bρ∑
b=1

∂rb
∂r

, ∂IBρ−1 = −γ
Bρ−1∑
τ=1

∂rb
∂r

. (37)

Still, we use lhs and rhs to denote the two sides of the Eq. (34).
From the non-batch analysis, we can extend Eq. (25) as

E[rhs] = CrE[F̄Bρ−1 − F̄Bρ ] (38)

Cr = − 1

ZB
[(1− α)∂IBρ−1 − α∂IBρ ] (39)

where we still assume r(·) is independent from the private 1013

noise which makes Cr constant. 1014

Consider the case when the f is L-smooth. Thus,

E [ft − ft−m] ≤ E[∇>t−mgt−m +
L

2
‖gt−m‖2],

for all t in BBρ . Averaging over t, we get:

E
[
F̄Bρ − F̄Bρ−1

]
≤ E[

1

m

∑
t∈BBρ−1

∇>t gt +
L

2
‖gt‖2]

≤ − 1

2L
E‖∇t‖2

Bρ−1

+
pσ2

ζt

Bρ−1

2L
,



where we make use of ζt defined in Eq. (26) and its bound in
Eq. (27). Combine this with Eqs. (34) and (38) to get

E‖∇t‖2
Bρ−1

≤ pσ2
ζt

Bρ−1
+

2L

Cr

B∑
b=1

1

µb
(rb − ρ̂b)

∂rb
∂r

.

(40)

To find the value of 1
µb

(rb − ρ̂b), we need to use Eq. (35)
which gives:

1

µb
(rb − ρ̂b) =

1

mC ′σ,b

∑
t∈Bb

∂ft
∂σ

, (41)

C ′σ,t
b

=
1

m

∑
t∈Bb

∂ρt
∂σ

. (42)

According to Eqs. (29) and (30), it can be attained that

E[
1

µb
(rb − ρ̂b)] = − C′t

b

C ′σ,t
b

(43)

where we modify Eqs. (30) and (32) as

C′t = E[V bt−1

>∇t] =

p∑
i=1

Cov(V bt−1,i,∇t,i)

V bT,i =
∑

t∈Bb,t≤T

∂σt
∂σ

ν>t
∂(−gt)
∂∇̃t

, T ∈ Bb.

Substituting it into Eq. (40), we can get Eq. (36). This thus1015

completes the proof.1016

B.7 Implementation details1017

In this section, we present the implementation details for the1018

the projector and scheduler models. We use the Long-Short1019

Term Memory (LSTM) networks as the backbone models.1020

Constrain Noise-Scale Prediction. To stablize the L2P
training, we explicitly constrain the range of the noise scale
by using a Sigmoid activation in the scheduler. In addition,
assuming the sigmoid output of the LSTM is y, we scale the
output as

σmin + 2(σg − σmin)y,

which is constrained in (σmin, 2σg). The σlb is the lower1021

bound of noise scale which derived from the upper bound of1022

privacy budget, e.g., ρa for (ρ, a)-ctCDP. The σg is estimated1023

by uniformly scheduling budgets. Generally, we will expect1024

the predicted σ is centered around σg and is not too large,1025

e.g., larger than 2σg, which will violate the utility greatly.1026

With the constraint, the noise prediction will not fluctuate1027

significantly.1028

Coordinate-wise LSTM. Following the implementation1029

in (Andrychowicz et al. 2016), we share the parameters1030

of LSTM for all optimized parameters. Therefore, a small1031

LSTM can work for optimizing large-scale neural networks.1032

Incremental Pre-training. Training an L2P model from1033

scratch may suffer from a great amount of DP noise such1034

that no useful information can be learned. For simple tasks,1035

pre-training without noise can mitigate this noise gap since1036

it could avoid some random optimization exploration at the 1037

beginning. For complicated tasks, e.g., deep neural networks 1038

or large-scale models, the gap between L2L models and high- 1039

privacy L2P models can still be huge. The DP noise is added 1040

without considering the scale of the model. Specifically, when 1041

the size of model parameters increases and the scale of their 1042

every coordinate decreases meanwhile, the DP noise will 1043

not change if the clipping norm is fixed. Thus, the noise is 1044

relatively amplified. Especially for deep models, the small 1045

coordinates may greatly affect the model performance and 1046

thus deep models are more sensitive to DP noise. Therefore, 1047

neither a scratch nor an L2L model could be robust enough 1048

as an initialization for the L2P model. Instead, we suggest 1049

an incremental pre-training in which the privacy scale ε will 1050

incrementally increase from 0. 1051

C Additional experiments 1052

C.1 Quadratic optimization 1053

Setup. To show the optimality of L2P training, we compare
different algorithms by non-privately tuning them. Formally,
given a fixed size of privacy budget, we train or tune a private
optimizer on the quadratic optimization problems:

minθ f(θ) =
∑60

i=1
‖Wiθ − yi‖22 + 0.001 ‖θ‖22 ,

with random constants Wi ∈ R2×2 and yi ∈ R2 for i ∈ 1054

{1, . . . , 60}. We note that the tuning/meta-training is non- 1055

private such that we can see if the L2P can converge to the 1056

best private optimizer on the auxiliary datasets in comparison 1057

to baselines. 1058

L2P-Proj (L2P with only projector) and L2P models are 1059

trained independently. Hence we can see the effect of adap- 1060

tive perturbation. All optimizers are only tested on identi- 1061

cal W , y and initial variables. The L2P and L2P-Proj are 1062

trained with normally randomized W and y for 200 epochs 1063

after they are pre-trained without noise in the same way 1064

and the best model are selected with the lowest loss when 1065

their privacy budgets are used up in validation. The iteration 1066

numbers for SGD-Adv and L2P-Proj are chosen in range 1067

{10, 20, 30, 40, 50, 60} which are enough for convergence of 1068

such quadratic problems. The step size is chosen from 0.001 1069

to 0.02 with 20 choices for SGD-Adv, while AGD uses the 1070

line search in the same range with 20 choices. 1071

Results. In Fig. 8, four optimization methods are com- 1072

pared at the same (0.05, 10−8)-DP. As shown in Fig. 8, the 1073

proposed L2P converges to the zone close to but not exactly at 1074

the noise-free optimal solution. The optimization algorithms 1075

stop before reaching the optimal, because of the imposed 1076

budget constraint. Recall that the model at the optimal solu- 1077

tion may leak sensitive information. We see that L2P guides 1078

the optimization toward the optimal by adjusting the update 1079

directions. More importantly, L2P-Proj reduces the noise 1080

magnitude, uses more step budget but converges in less steps. 1081

Because L2P-Proj has omitted no budget scheduler, it stop in 1082

a different spot. In comparison, the SGD-Adv algorithm ran- 1083

domly walks in a rather large region. Though AGD reduces 1084

variances relatively, it barely finds the correct optimization 1085

direction. 1086



1 0 1
1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

0.000

0.500

1.000
1.500

1 0 1
1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

-0.500

0.000

0.500

1.000
1.500

1 0 1
1.5

1.0

0.5

0.0

0.5

1.0

1.5

-0.500

0.000

0.500
1.000

1.500

1 0 1
1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000
-0.500

-0.500

0.000

0.500

1.000
1.500

1 0 1
1.5

1.0

0.5

0.0

0.5

1.0

1.5

-0.500

0.000

0.500
1.000

1.500

1 0 1
1.5

1.0

0.5

0.0

0.5

1.0

1.5

-0.500

0.000

0.500

1.000
1.500

(a) SGD-Adv

1 0 1
1.5

1.0

0.5

0.0

0.5

1.0

1.5

-0.500

0.000

0.500

1.000
1.500

1 0 1
1.5

1.0

0.5

0.0

0.5

1.0

1.5

-0.500

0.000

0.500
1.000

1 0 1
1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000
-0.500

-0.500

0.000

0.500

1.000
1.500

1 0 1
1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500
0.000

0.500

1.000
1.500

1 0 1
1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

-0.500

0.000

0.500

1.000
1.500

1 0 1
1.5

1.0

0.5

0.0

0.5

1.0

1.5

-1.000

-0.500

-0.500

0.000 0.000

0.500

1.000
1.500

(b) AGD
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Figure 6: Comparison of the convergence (ε, 10−8)-DP with ε varying as 0.05, 0.1, 0.2, 0.4, 0.8, 1.6 from top to bottom.
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Figure 7: Test performance (top) and training loss values (bottom) by varying ε of SVMs classifiers on IPUMS and MNIST
datasets. The error bar presents the size of standard deviations. For better visualization of error bars, some virtual horizontal
offsets are added to every point.
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Figure 8: Comparisons of (0.05, 10−8)-DP algorithms on a quadratic problem. Solid contour lines illustrate the loss values. The
trajectory distribution of 100 repeated optimizations are shown in blue shadowed contours. Sampled trajectories are plotted in
orange.

Additional quadratic optimization results for different ε are1087

shown in Fig. 6. Because the quadratic problem uses very few1088

data and its gradients are in small scale, the optimization will1089

be very sensitive to the noise. In this case, SGD-Adv rarely1090

find the proper directions to go. In contrast, adaptive DP1091

algorithms perform better. L2P-Proj behaves similarly to the1092

L2P. However, when ε gets smaller, L2P is capable to use the1093

budget more efficiently such that it can converge to a better1094

position. Meanwhile, L2P-Proj cannot adaptively adjust its1095

step budgets which make the execution length shorter. AGD1096

shows some ability to correct the noised directions but it fails1097

when the privacy constraint is higher.1098

C.2 Experiments of generalization to different1099

distributions1100

In this section, we provide additional experiments for evalu-1101

ating the generalization ability of L2P.1102

Experiments of SVMs. The results are reported in Fig. 7.1103

The results are similar to the Logistic.1104

C.3 Classification on MNIST35 datasets with 1105

non-convex objectives and varying ε 1106

In addition to convex objectives, we also evaluate our mod- 1107

els on a popular non-convex model, neural networks. The 1108

evaluated network includes two layers of 20 and 2 units (for 1109

binary classification), respectively. The layers are connected 1110

with sigmoid activations. The loss is computed by the cross- 1111

entropy function. 1112

Different from logistic and SVM models, the patterns of 1113

optimizing a neural network could be hard to learn for L2P. 1114

The first issue is that the relative magnitude of noise w.r.t. the 1115

gradient coordinates is enlarged when the size of the gradient 1116

increases. For MNIST35 images of 28 × 28 = 784 pixels 1117

and a network with 20 units in the first layer, the number 1118

of connection weights could be 20× 784 which is 20 times 1119

of an SVM model. Since a constant L2 sensitivity, e.g., 2, 1120

is expected, the gradient norm will be less than 2, which 1121

makes each coordinate much smaller while the number of 1122

coordinates increases. Meanwhile, the scale of noise will 1123

not change for each coordinate, which means it increases in 1124

a relative way. This issue makes private learning methods 1125

hard to achieve the same utility performance under the same 1126



privacy requirement. As a result, we adjust the clipping norm1127

to 2 which can slightly reduce the noise scale.1128

The second issue has been discussed in L2L (Andrychow-1129

icz et al. 2016). The optimization of the L2L or the L2P1130

projector will encounter numerical issues for that the weights1131

in different layers of the optimized networks have differ-1132

ent magnitude. Since the optimization often focuses on the1133

large elements, it will cause the optimizer barely updated1134

and thus no convergence can be witnessed. As suggested by1135

Andrychowicz et al.(Andrychowicz et al. 2016), either scal-1136

ing the gradient by logarithm and sign mapping or scaling1137

the output of the L2L by a constant can mitigate the issue.1138

The former method augments the insignificant information1139

in the gradients, while the second one resembles the learning1140

rate such that the predicted updates will not fluctuate too1141

much. To avoid that the gradient values are overwhelmed1142

by noise and the L2P model absorb useless information, we1143

recommend the latter method and use the scaling constant as1144

0.05.1145

In addition, optimizing small gradient coordinates with1146

noise could be challenging. Incremental pre-training intro-1147

duced in Appendix B.7 could reduce the hardness step by step1148

through the step could be flexible. For example, when trained1149

with ε = 0.2, the L2P should be initialized by L2P without1150

noise. When trained with ε = 0.05, the L2P should be ini-1151

tialized by L2P with ε = 0.2 instead. Other experimental1152

settings follow the same principles in previous ones.1153

For a more precise trade-off between utility and privacy1154

losses, a tuning of the privacy loss coefficient is necessary. A1155

recommended range of the coefficient is {500, 1000, 5000}.1156

Using the training data to monitor the convergence curves1157

will be helpful for choosing a proper coefficient. Meanwhile,1158

the estimated number of iterations which determines the ini-1159

tial privacy cost should be selected in {30, 60, 100, 400}. For1160

a small ε, a small iteration number will be more helpful for1161

the convergence.1162

In the last column of Fig. 3, we compare the DP ε against1163

the utility metrics, accuracy and loss, on the MNIST351164

dataset. The ObjPert and OutPert are excluded since it is1165

designed for convex problems only6. Because some methods1166

cannot converge in optimizing the network due to above-1167

mentioned computation difficulties with a large noise, we1168

adjust the range of ε. It can be seen that for similar low pri-1169

vacy conditions, L2P can train models with higher accuracy1170

in most cases. The ε of SGD-MA increases slowly after 0.81171

and its left boundary is given when the the number of iter-1172

ation is 1, for which only a narrow range is available for1173

presentation.1174

Notably, when ε > 0.6, the performance of SGD-MA is1175

better than other methods except the L2P and AGD, which1176

is quite distinct from previous experimental results. Because1177

SGD-MA is originally designed for optimizing deep mod-1178

els (Abadi et al. 2016), the moment accountant method is1179

used for calculating the privacy level ε is more suitable for1180

6Though the OutPert is claimed to be capable for nonconvex
problems with SGD algorithm (Zhang et al. 2017), the algorithm re-
quires a constant of β-smoothness which can not be easily obtained
or designed for neural networks.

Table 1: Space and time complexity on different batch sizes.
#unroll represents the number of unrolled steps in L2P train-
ing. ‘full’ means a full unrolling in one batch while 40 and
20 denotes the sizes of mini-batches.

Memory (Mb) Epoch time (sec)

#unroll full 40 20 full 40 20

200 474 282 250 19 21 21
400 730 282 250 41 90 89
600 1242 282 250 57 102 173
1000 1843 282 250 164 188 190
1200 2066 282 250 172 248 266
1600 2266 282 250 418 357 350

mini-batch optimization. In other words, the noise scale in- 1181

creases slower by ε using SGD-MA. Since the L2P uses the 1182

same batch privacy estimation, it is rational to see the L2P 1183

could share the benefit in optimization. When ε ≥ 0.8, SGD- 1184

MA outperforms other methods. It is because the moment 1185

accountant of privacy costs can lead to a tighter bound of 1186

compositions than ρ-zCDP used by L2P and AGD when ε 1187

increases. But ρ-zCDP can provide a more convenient and 1188

efficient way to compute the privacy cost explicitly. Moment 1189

accountant has to compute the privacy cost by iterating over 1190

the moment orders which is relatively slow. Though L2P does 1191

not outperform in accuracies when ε > 0.8, it has obviously 1192

lower training losses. It means L2P can optimize the losses 1193

better within less iterations, which might be local optimal, 1194

though. 1195

C.4 Scalability 1196

When extending the meta-training of L2P from non- 1197

constrained optimization to the constrained one, a critical 1198

issue is the scalability of the algorithm. Here we compare the 1199

time and space complexity of the batch and non-batch L2P 1200

algorithms to give a view of the issue. 1201

Setup. The memory usage is measured by the GPU mem- 1202

ory through the ‘nvidia-smi’ command on a Ubuntu 16 sys- 1203

tem with a TITAN X GPU and CUDA 10.1 driver. The pro- 1204

gram is written using TensorFlow 1.157 and allocates memory 1205

on need. The time is measured by the process time of one 1206

epoch averaged on 100 epochs. We use a 4-layer MLP and 1207

MNIST2 dataset for demonstration of budget-constrained op- 1208

timization of schedulers. Because the memory usage grows 1209

nonlinearly due to the TensorFlow allocation, it is slightly 1210

more (around 20 to 50 Mb) than the true value while the trend 1211

is not affected. 1212

Results. We empirically show the time and space com- 1213

plexity versus the unrolling length in Table 1. We see that 1214

the memory size increased quickly using the full batch while 1215

mini-batch does not need extra memory. Instead, mini-batch 1216

trade the memory with higher but acceptable time complex- 1217

ity. Experiments for larger networks (e.g., 128 layers) are 1218

included in the supplementary. Experimental results suggest 1219

that when a longer unrolling and larger network (e.g., 1000 1220

7https://www.tensorflow.org/

https://www.tensorflow.org/


steps for 128-layer network) are needed, slowly increasing1221

the batch size will be beneficial to fit the algorithm into a1222

limited GPU memory.1223

D Discussion1224

a) Query Efficiency. In comparison to AGD (Lee and Kifer1225

2018), the proposed L2P requires fewer times in querying the1226

datasets to obtain the private model, because that AGD needs1227

to query the dataset at each regret. To see this, we assume1228

that the unit privacy cost of one query is ε. At each iteration,1229

AGD conducts two queries, including one query for objective1230

and the other for the gradient, if no regrets occur. Once one1231

regret occurs, at least one additional query is required. On the1232

other hand, in L2P the regret query happens in the training1233

process of protector on auxiliary learning tasks: when a bad1234

gradient gt causes a lower loss at Lt, the effects will be back-1235

propagated to the LSTM cells, as shown in Fig. 1. Since1236

there are no privacy concerns in training the protector, the1237

back-propagation is more accurate than the random objective1238

queries used in AGD.1239

b) From Noised Model Training to Optimizer Training.1240

In many learning algorithms, the noise-injected training, e.g.,1241

dropout training (Wager, Wang, and Liang 2013), has shown1242

to be a useful way to improve the robustness or generaliza-1243

tion of an algorithm. Especially if there are infinitely many1244

additional noised samples for training, the classification per-1245

formance can be improved against specific noise test envi-1246

ronment and both in linear space (Maaten et al. 2013) and in1247

nonlinear one (Hong, Chen, and Lin 2018). A critical differ-1248

ence between traditional noise-gradient-based DP algorithm1249

and noised training is the number of noised samples in noised1250

training or gradients in DP 8. Because the constraint of pri-1251

vacy budget, the allowed training step is limited. In other1252

words, the number of noised gradients is far away from in-1253

finity. Thus, the DP training can only result in a degraded1254

model.1255

Since, in DP, the noised component is the gradient which1256

is the input of an optimizer, we propose to improve the opti-1257

mizer by training it with noise. It is a direct extension of the1258

noised training except that we also train the noise variance1259

which is related to the privacy budget.1260

c) The Denoising Effect of Utility Projector The projector1261

in L2P is a denoising post-processing step which does not1262

expose the original data, though. The guarantee is given in1263

Lemma A.4. Denoising is not new in this area which has been1264

studied in different directions. Recently, Balle and Wang en-1265

hanced the one-time query utility on Gaussian mechanism1266

by calibration and statical denoising (Balle and Wang 2018).1267

They proved that a scaling factor on the query result could1268

lead to a smaller expected distance between the private output1269

and the original one. Though their method is the analytic nois-1270

ing mechanism, it lacks necessary precise composition theory1271

for multiple queries (e.g., a learning algorithm) in compari-1272

son to their baseline moment accountants (Abadi et al. 2016).1273

Earlier, Barak et al. (Barak et al. 2007) and Hay et al. (Hay1274

et al. 2009) show that accurate estimation can be achieved1275

8Since noised samples can lead to noised gradients, we put them
in approximately equivalent position here.

by enforcing table releases and graph degree sequences to be 1276

consistent. Karwa et al. make use of the knowledge of the 1277

noise distribution to efficiently infer a DP graph. In addition, 1278

the idea integrating prior into the Baysian inference from pri- 1279

vate outputs is formulated in (Williams and Mcsherry 2010). 1280

Bernstein et al. use Expectation-Maximization to denoise the 1281

parameter of a class of probablisitc graphical model (Bern- 1282

stein et al. 2017). When a target solution is sparse, it is also 1283

possible to project linear regression model to a known l1-ball 1284

which improves the resultant error. 1285

Among these work, Balle and Wang’s work (Balle and 1286

Wang 2018) and Lee and Kifer’s work (Lee and Kifer 2018) 1287

is the first to adaptively perturb the outputs. Balle and Wang 1288

chose to scale the outputs with a factor adapted to the size 1289

of private outputs. This idea is also reflected in our adaptive 1290

perturbation where the step noise variance is adjusted accord- 1291

ing to the private gradient norm. Differently, the variance is 1292

adaptively calibrated according to an additional query to an 1293

alternative objective. Also, this is leveraged in our method 1294

while the objective query happens in auxiliary training before 1295

a private execution. 1296

d) Protecting L2P Training Data. When there are very dif- 1297

ficult learning tasks and hard to identify public auxiliary 1298

learning tasks, one may want to use some private data for 1299

auxiliary learning, which may cause privacy concerns when 1300

using protector in the sensitive learning. In such a case, the 1301

training of L2P protector should also be done in a private 1302

learning setting, e.g., perturbing the gradients or objective 1303

functions through classical privacy-preserving algorithms. 1304

e) Choice of Auxiliary Tasks. The L2P protector as well 1305

as the learning-to-learn (Andrychowicz et al. 2016) are in 1306

fact performing transfer learning methods that gain gradient 1307

knowledge from auxiliary tasks and apply to a target learning 1308

task, with and without privacy consideration respectively. We 1309

see from our experiments that even though arbitrary choices 1310

of auxiliary tasks can deliver promising protectors, more 1311

relevant ones can further bring significant performance gains. 1312

This points out an important direction for future work, i.e., 1313

how to quantify the task relatedness so we can use high- 1314

performance protectors for a given learning task. 1315

f) The availability of a public auxiliary dataset similar 1316

enough to the private one. 1317

Prior than our paper, public dataset has been suggested for 1318

tuning hyper-paramters of private learning algorithms (Wu 1319

et al. 2017). However, they did not state how to access the 1320

public data and the affect of using different auxiliary datasets. 1321

Our method extend the setting for practical purpose. In prac- 1322

tice, choosing public auxiliary dataset may not be a trivial 1323

work which greatly affect the performance. Here, we show the 1324

affects in experiments and with some primitive criteria, we 1325

can select useful auxiliary dataset easily. More complicated 1326

methods could be developed based on our primitive settings. 1327

For example, use cross validation to verify the effectiveness 1328

of the auxiliary datasets and extract more non-private infor- 1329

mation from the target private datasets for accurate auxiliary 1330

dataset selection. 1331

More reasons can support the usage of auxiliary datasets in 1332

private learning. First off, the availability of auxiliary datasets 1333

is the main assumption of this paper and however this is a 1334



rather common assumption used by other lines of work, such1335

as learning-to-learn (L2L), where the learning trajectories1336

from other tasks are leveraged. 2) Secondly, for most learn-1337

ing tasks in real-world there are similar publicly available1338

datasets, such as electornic medical records or computer vi-1339

sion tasks, on which we can construct auxiliary learning1340

tasks. 3) Moreover, the proposed L2P framework is learning1341

momentum experiences from other optimization problems,1342

instead of heavily relying on similar datasets, we therefore1343

can leverage a wide spectrum of auxiliary optimization tasks1344

of the same class. For example, a quadratic programming1345

(QP) task may benefit from optimization procedures of many1346

other QP, sometimes even a random QP problem of the same1347

size according to our empirical study (Fig. 2). 4) To evaluate1348

the influence of the choice of auxiliary datasets, an experi-1349

ment comparing different subsets of MNIST classes is con-1350

ducted in Fig. 4. The experiment is constructed to simulate1351

the scenario that both the auxiliary and protected datasets are1352

used for binary classification task with same losses. It turns1353

out that visually similar class sets, e.g., {4, 6} (auxiliary) to1354

{3, 5} (protected), yields better accuracies while less similar1355

ones still show performance above the best baseline.1356
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