702

703
704

705
706
707

709
710

71
712

713
714
715
716
717
718
719
720
721
722

723

724
725
726
727
728
729
730
731
732

734
735
736
737
738

739
740
741

A Differential Privacy Metric

The (¢, 6)-Differential Privacy is the most widely used pri-
vacy metric which is defined as

Definition A.1 (Differential Privacy (Dwork et al. 2006b;
Dwork 2006; Dwork et al. 2006a)). Let D™ be space of
datasets including n samples. A randomized algorithm M :
D" — Zis (¢,0)-DP if for all adjacent* D, D’ € D™ and
for all subset of outputs S C Z, we have

P(M(D) € S) < e“P(M(D') € S) + 0.

If § = 0, then M achieves pure DP which is stronger than
the case § > 0. To achieve better properties described in
Section 3.1, we give a privacy guarantee by a new privacy
metric and its proofs here.

A variant of DP is called w-truncated p-Concentrated Dif-
ferential Privacy (Bun et al. 2018) as follows.

Definition A.2 ((p,w)-tCDP). Let w > 1 and p > 0. A
randomized algorithm M : D™ — R satisfied (p, w)-tCDP
if, for all adjacent inputs d, d’ € D",

Do (M(d)[|M(d)) < par, Vo € (1,w)

where D, (-||-) denotes the Rényi divergence (Rényi 1961)
of order a.

The (p, w)-tCDP provides nice properties for private learn-
ing as discussed in Section 3.1. The general usage can be
found in the Algorithms 1 and 2. However, the privacy pa-
rameters, (p,w), have to be carefully initialized and chosen
to satisfy their constraint.

In this section, we first summarize the properties of (p, a)-
ctCDP and then provide proofs based on the theoretic results
of (p,w)-tCDP. Also, we show how to use the properties
of the ctCDP to initialize the privacy parameters and add
essential constraints in detail.

A.1 Properties of (p, a)-ctCDP

We suggest an a-constrained truncated p-CDP (or (p,a)-
ctCDP) based on the (p, w)-tCDP to provide a minimal ex-
ample with tight composition bound, linear composition func-
tion and a simple Gaussian mechanism. It is defined in Defi-
nition 3.1. The proposal originates from the scenario where
the privacy budget is constrained as a constant, typically as
(e,9)-DP, and a series of properties are required for scalable
gradient perturbation (Algorithm 1). Other than ctCDP, more
complicated privacy metric can be used on demand. Here, we
first summarize the theoretic results of ctCDP with proofs
in the following sections. Note that most of the results are
identical to tCDP by fixing w as w,. The major difference lies
on the Lemma A.5 where the noising mechanism is assumed
to be derived from zCDP, resulting in a different constraint
on p.

Lemma A.1 (Relation to (¢, §)-DP). Suppose a randomized
algorithm M satisfies (pq,, a)-ctCDP with a = log(1/§)/e
and p,, defined in Definition 3.1. Then M satisfies (€,)-DP.

“By adjacent, we mean the two datasets have only one different
entry at most.

Lemma A.2 (Relation to tCDP). Suppose a randomized al-
gorithm M satisfies (p, a)-ctCDP. Then M satisfies (p,w,)-
tCDP where w, is defined in Definition 3.1.

Definition A.3 (Sensitivity). Given f : D* — R%, the Lo
sensitivity of f, denoted by Ay (f) (or simply A) is defined
as:

As(f) = max [|f(D) = f(D')]l;,

D,D’
where D, D' are adjacent datasets.

Lemma A3. The sensitivity of | V|| is Aa(||Ve]|2) =
(2|Dy| - 1)C2.

Proof. By definition,
13- 1]
mase |1 V2113 = V3]

2 2

11> Vi

2 i#m
2ll2

= max
D,D’

> Vi

where we assuming the m-th sample is eliminated from com-
puting the gradient V;. Also, we have

2
T
E:Vt,i :E Vt,ivtm
i 2]
!
E vt,i
i

Thus,

2 2
!
‘ § Vt,i _‘ E vt,i
4 2 4 2

=(2) Vi;=Vim) Vim
J

whose norm is lower than or equal to (2|D;| — 1)C?. Thus,
2
As([IVellz) = (21D = 1)C3. O

Lemma A.4 (Composition & Post-processing). Let two
mechanisms be M : D* — Y and M' : D" x Y — Z.
Suppose M satisfies (p1,a)-ctCDP and M'(-,y) satisfies
(p2, a)-ctCDP for Wy € Y. Then, mechanism M" : D™ — Z
(defined by M" (z) = M'(x, M(z))) satisfies (p1 + p2, a)-
ctCDP.

The Lemma A .4 is directly given by tCDP when we trans-
form ctCDP to tCDP with fixed w, (see Lemma A.2).

Instead of deriving a canonical noise mechanism for the
ctCDP, we directly use the Gaussian mechanism theorem of
zCDP and amplify its privacy cost in the form of ctCDP by
subsampling.

Lemma A.5 (Gaussian mechanism for p-zCDP (Bun and
Steinke 2016)). Let f : D™ — Z have sensitivity /. Define
a randomized algorithm M : D™ — Z by

M(z) < f(x) +N(0,07).
Then M satisfies %—zCDP.

2
=3 V) Vi =2> V. Vi + Y Vim.
2 ,J J

742
743
744

745

746
747

748

749

750
751
752
753
754
755

756
757
758
759
760
761

762

764
765
766
767

768
769
770
771
772
773
774
775
776
777
778
779

781
782
783
784

786
787
788
789

790

791
792
793
794
795

Lemma A.6 ((p, a)-ctCDP from p-zCDP by privacy amplifi-

Algorithm 3 Private learning initialization.

cation through subsampling). Letw, = (1+a)-++/a(a + 1).
Let p,q € (0,0.1], n, N € Y with ¢ = n/N (sampling rate)
and satisfy

log(1/q) = 3p(2 + logy(1/p)), ©)
0<p<mm{b%ym,£;}. (10)

Let M : D" — R satisfy p-zCDP. Define the mechanism
M, : DN — Y by M,(x) = M(x5), where x5 € DV is the
restriction of x € DY to the entries specified by a uniformly
random subset S C [N] with |S| = n.

The algorithm M, : DN — Y satisfies (13¢%p, a)-ctCDP.

Remarkably, the Lemma A.6 assumes the sub-routine is
p-zCDP. Since the subsampling-based privacy amplification
happens after the noise mechanism, it is natural to use the
Gaussian mechanism (Lemma A.5) which results in a zCDP
privacy cost.

These privacy guarantees are derived from (p,w)-tCDP
by constraining the range of p and w where w is simply a
constant. By sacrificing the flexibility of the privacy parame-
ters, we can get a single parameter metric which is simple in
notation. Moreover, by fixing the w, we will be able to update
the privacy parameters by gradient descent in meta-learning’.

In this paper, we apply the (p, a)-ctCDP to the gradient
perturbation scenario (Algorithm 1) where the total privacy
cost pyot is constrained by (¢, d)-DP. A completed pipeline
of private learning includes initialization of the parameters
based on the given privacy budget and the protected learning
(Algorithm 1). For the convenience of implementation, we
provide the detailed steps of the initialization in Algorithm 3
as supplementary to private learning. The algorithm is based
on the ctCDP with subsampling. If subsampling is not used,
only the step budget needs to be modified as py = pj with
the upper bound py, = pg-

A.2 Budget constraint from standard DP

Our motivation for proposing ctCDP is that existing private
learning methods are typically compared by performance
under a given privacy budget. Therefore, we first introduce a
budget constraint using the standard DP, which is translated
as bounds on the tCDP parameters.

Theorem A.1 (Transformation of tCDP to DP). Suppose M

satisfy (p,w)-tCDP. Then, for all § > 0and all 1 < o < w,
M satisfies (€, d)-DP with

] p+2y/plog(1/6), log(1/6) < (w—1)%p
T oo D og(1/6) > (w—1)%

When € and § are fixed, we want to maximize the available
budget p and fix w,. We consider log(1/6) > (w —1)?pto
find the upper bound of p when w can be maximized, as well.
First, we solve the linear function of p, i.e., € = pw -+ log(l/ 5),

given some w. Let
a = log(1/6) /e

>Note that the composition of w in (p, w)-tCDP is not continu-
ously differentiable if all sub-mechanisms have varying w.

(¢,0)-DP, the number of learning iterations (T") estimated
from non-private algorithms.
1: Transformation from DP to ctCDP (Lemma A.1): a <
log(1/6)/e and compute p, and w, by Definition 3.1
2: prot < Pa-
3: Estimate step budget by uniformly decomposing pyo into
T steps: py < &2 (Lemma A 4).
4: Estimate a batch sampling rate ¢, e.g., ¢ + (\/@ +
10)/ |D|./
5. po % (subsampling by Lemma A.6)
6: If pg and g do not statisfy Egs. (9) and (10), re-estimate
q by choosing the smaller solution to

/

Pro P
log(1/4) = 35%(2 ~ o (525))
Po_ log(l/q)
1342 4w,

Then re-compute pg using the new q.
7: Get the upper bound of step budgets: py, (Eq. (10)).
8: Compute noise scale by Lemma A.5:
9: estimated step noise: oy = A/\/2po
10: step noise lower bound: oyin = A/v/2pu
11: Compute batch size | D;| = [gn].
12: Output: pior, 0, Tmin, ¢» | Dy

and denote the solution as

PCDP = 5 (1 _ IOg(l/(S)/€) _ e(w— (a+ 1))

(1)

w—1 w(w—1)
Now, we substitute the pcpp into log(1/8) > (w — 1)?p to
obtain
aw > (w—1)(w— (a+1))
= (1+a)—+vala+1) <w<(1+4+a)++ala+1)

By the definition of tCDP, picpp > 0 and w > « > 1. Thus,

w>landw > a+ 1.

Because a + 1 > (1 +a) — y/a(a + 1) and ¢ > 0, the only
solution to log(1/6) = (w — 1)?p is the upper bound. Now,
we denote the upper bound of w as

we = (14a)+ ala+1)

and substitute it into Eq. (11) to get
ala+1)

ala+1))(a+

pa & 12)

ta+ ACESY)

which is also the solution of € = p 4+ 24/plog(1/4).
Until now, we finish the proof of the bounds in Defini-

tion 3.1. In addition, it is straightforward to get that (p,, wq)-
tCDP is equivalent to (p,,a)-ctCDP. Thus, we have the
Lemma A.1. We can further extend it for p < p,.

797
798
799
800

801

802
803
804

805

806
807
808

809
810
811

812

814
815
816
817
818
819
820
821
822
823
824
825
826
827

829
830
831
832
833
834
835
836

838
839
840

841

Lemma A.7 ((p, a)-ctCDP to (¢, §)-DP). Suppose a random-
ized algorithm M satisfy (p, a)-ctCDP for 0 < p < p, and
a > 0, then M satisfies (e, §)-tCDP with

(wa — Dw,
= e 1" exp(—ac)

A.3 Noise mechanism

The canonical noise for tCDP is a Gaussian noise reshaped
by a sinh function. We restate the theorem by rearranging the
variables.

Theorem A.2 (Sinh-Normal mechanism for (p,w)-tCDP
(Bun et al. 2018)). Let f : D™ — Z has sensitivity A.

Let p = 8A2, w satisfy 4%2 < p < 16 and A = 8Aw. Define

o2

a randomized algorithm M : D™ — Z by

M(z) « f(z) + Aarsinh(%]\/(o, o2)).

Then M satisfies (p,w)-tCDP.

If w — oo, then A — oo in which case the (p,w =
00)-tCDP is just p-zCDP and the Sinh-Normal distribution
degrades as the normal distribution. However, due to the

. . . 2 . .
truncation of w, the privacy cost, 1.e., 80%, 1S not as optlmal
as p-zCDP. Therefore, we use the noise mechanism of p-
zCDP (Lemma A.5) when w — oo.

A.4 Privacy amplification by subsampling

In stochastic gradient descent, a batch of data subsampled
from the whole dataset is used to update models. It is criti-
cal for implementing scalable learning algorithms. Because
of the randomness of subsampling, it provably reduce the
privacy cost. Technically, there are two ways to subsample
the batch. One is random sampling without replacement or
reshuffling (RF) which is widely used in the non-private deep
learning. Yu et al. (2019) proved the composed privacy cost
is the maximum of batch costs in one RF epoch. Numerically,
each batch is gp-zCDP if the full batch cost is p and batch
sample rate is ¢. In this case, the dynamic budget alloca-
tion for batches within one epoch is always worse than the
uniform schedule.

The other strategy is the random sampling with replace-
ment (RS), for example, in SGD-MA for the private deep
learning (Abadi et al. 2016). Compared to RF, RS injects
more randomness and therefore scale down the privacy cost
more (Yu et al. 2019), for example, a ¢> factor in the MA.
The lack of privacy amplification for RS motivates the de-
velopment of extensions. Both tCDP (Bun et al. 2018) and
the modified zCDP (Yu et al. 2019) spot the issue theoreti-
cally and provide similar solutions by truncating the order of
Rényi divergence. A privacy amplification of tCDP is given
Theorem A.3.

Theorem A.3 (Privacy amplification by subsampling for
(p,w)-tCDP). Let p,q € (0,0.1] and positive integers n, N
with ¢ = n/N and log(1/q) > 3p(2 + log%(l/p)). Let M :
D" — R satisfy (p,w’)-1ICDP for w' > 5-log(1/q) = 3.

Define the mechanism M, : DN — Y by M,(x) = M(z5),

where x5 € DV is the restriction of v € DN to the en-
tries specified by a uniformly random subset S C [N] with
|S] = n.

The algorithm M : DN — Y satisfies (13¢°p, w")-tCDP
forw = logé(li;/q)'

In comparison, the modified zCDP does not have a strict
theoretic proof of the scale factor of the privacy cost but
empirically shows that ¢?p works for a wide range of p. Here,
we use tCDP to derive the range of privacy parameters.

In Theorem A.3, w” is a variable depending on the p rather
than w’. Thus, we let w’ — oo to degrade (p,w’)-tCDP as
p-zCDP when p € (0, 16).

Recall our target is to simplify the tCDP by eliminat-
ing w. Because the subsampled mechanism also satisfies
(13¢?p, wy)-tCDP if w, < w”, we constrain p as

log(1/q) log(1/q) pa }

13
dwe 6 7 13¢2 (13)

p<min{

where 1:@# comes from the constraint of (p, a)-ctCDP on
13¢2p. Typically, when w, > 1.5, the log(1/q)/6 can be
ignored. Because 1.5 is too small to reach for w, in practice,

we may assume it is satisfied generally.

B Methodology supplementaries
B.1 Model-based private learning

Here, we provide the formal statement and proof of Theo-
rem 4.1.

Theorem B.1 (Privacy guarantee of model-based gradient
descent). Suppose a gradient-based algorithm Algorithm 1
is protected by Algorithm 2 and o(-) and 7 (-) are crafted
fully independently from the private data. The output of the
algorithm, i.e., O (assuming the loops stop at step T), is
p-ctCDP where p < pu, if fo(+), fs(+) and p(-) are defined
based on ctCDP properties (Lemmas A.4 to A.6).

Proof. For brevity, we omit the a in notations. Denote
the sub-routine defined in Algorithm 2 is gy, ps, 2441 =
M;(V¢, z¢) where z; denotes the hidden states. Then each
iteration of private learning in Algorithm 1 can be abstracted
as 0141, 2141 = A¢(04, g1, 2, pt). Because of the linear com-
position, Lemma A.4, the condition fc(p1.¢) > puor can be
justified by pregiqual > 0 Where presiqual <= Presidual — P¢-

By rearranging variables, without changing the meaning
of the mappings, we can write the iteration as 0;1, 2,41 =
At (M (64, z:)) where d denotes the private batch data. Sup-
pose (0y, z;) is p;-ctCDP w.r.t. the dataset and the mapping
M,(-,-) is p;-ctCDP w.r.t. the dataset. Thus, according to
Lemma A4, 9t+172’t+1 = At(Mt(Ht,zt)) is ﬁt+1-CtCDP
where pyr1 = Py + pr

Next, we show M (-, -) is p;-ctCDP for t < T and some
pt < 00. According to Lemma A.5, the noised gradient is
1/207-zCDP and the noised gradient norm is 1/2¢;-zCDP
(note its sensitivity is proved by Lemma A.3). Further using
the Lemma A.6, we can compute

1 1
=133 (-5 +-—=)<
Pt 1 <20’t2 - 202> >

g

842
843
844
845

846

847
848
849
850
851
852
853

854

855
856
857

858

859

860
861

862
863
864
865
866
867
868

869
870
871
872
873
874
875
876
877
878
879
880

882

883

885
886
887
888

889

890

891
892
893

894
895

896

897
898
899
900
901
902
903

904

if o4 and o4 are non-zero.

Now we show A;(M;(0y,21)) is p1-ctCDP. Typically,
01,2z, are randomly initialized or constantly zero which
are independent from the dataset. Therefore, (61,z2;) is
0-ctCDP. By Lemma A.4, because M, (-,-) is p1-ctCDP,
Al(Ml(gh Zl)) is pl-CtCDP.

In summary, the output of model-based private learning,
ie., 0p = Ap(My (01, z7)) (omitting 274 1), is pp-ctCDP
where

T

pr = pr—1+pr = Zpi < Prot-
i=1

B.2 Augmented Lagrangian algorithm

Given py > 0, tolerance 79 > 0 (Nocedal and Wright 1999)
(Chapter 17), starting point o9 and \°, the variables are itera-
tively updated:

1. Line search s such that o™ is an approximate minimizer
of L, (the gradient norm is less than 73,):

ot =0—s VUF(T,UT)—Fdj z—

“e—h(@)/m]| (4

2. If the final convergence criteria satisfied, stop with approx-
imate solution o

3. Update Lagrange multiplier:

2t =2—h(c")/p (15)

4. Choose new penalty parameter u € (0,).

where s is the step size and we let o be a vec-
tor [01,--- ,07]" or constant scalar. The update on oF
can be replaced by another line search, i.e., T =
argmin,, Lo (0’(s)) where o’(s) is given by Eq. (14). In
practice, we want to avoid the second time of unrolling o
because it is required in Eq. (15). To fix this issue, we proceed
with steps 3, 4, first and then finally perform step 1.

B.3 Analysis of the gradients

A generic gradient descent method can be summarized as a
set of sequential updates on the parameter 6, i.e.,

Or =01 + gt

S

Il

D

fiin

l’
N o~
i1

(Vi + owy), ve ~ N(0,1).
1

~
Il

Assume 6‘9‘” = 0and 89’
pute the gradient w.r.t. at as

ofr 9V, dg Ofr

aO’t - 60'15 a@t 69T

= 0. Therefore, we can com-

a’ﬂ'(@t)
=y XV 16
t 8Vt T ()
0
= (V - V)" (Ve)VT
gt 8Vt
1 -
~ ?(”(vt) — (V) Vr 17)
t
where @t = V. + oy and we approximate in the last

term by Taylor expansion. Taking expectation, we can see
from Eq. (16) that the gradient is related to the covariance
between the noise v; and the final gradient V7. Intuitively,
if aiji =0 and ag, = 0, the gradient updates on o, will
increase a lot When t << T'. Together with the observation in
Eq. (17), it can be witnessed that the scheduler is decided by
the denoising effect of the 7.

In our implementation, we use an RNN to model the 7 and
o which could greatly denoise the updates according to its
memory. Furthermore, in Appendix B.6, we give an exact
bound of the utility which closely relate the scheduler and
projector together.

B.4 Optimality Stability

The optimality of learning scheduler is achieved by vanishing
the gradient in Eq. (3). If both of the two terms in Eq. (3) are
zero, the second term will be quite unstable since the f; and
F' are random variables. Especially when the expectation of
the gradient is estimated by only few samples, the instability
will be a major issue. Here, we focus on the second term
and analyze the probability for it to be zero. Assume the
optimization of f has converged and the expectation of the
gradient is estimated by one sample.

Non-batch algorithms. An optimal case for the non-batch
algorithm is f; = fy for all ¢,t' € T where Z; # 0 and
7, # 0. By convergence, we assume the expected loss values
cannot be decreased any more since the private updates are
totally governed by the noise instead of gradients. Therefore,
we can further assume the losses are identically independently
distributed with variance Var[f;] = o%. According to the
Chebyshev’s inequality, we have, for a constant &,

2
< 52

which does not vanish since o is non-zero due to private
noise. That means only using one optimization process can
barely reach the zero gradient condition.

Batch algorithms. The condition f;
extended to the batch case, i.e.,

teB; teB;

P(lfe = fil >) <

= fy can be easily

(18)

905
906
907
908
909
910
911
912
913
914
915
916
917

918

919
920
921
922
923
924
925
926
927

928
929
930

931
932

933

934
935
936
937
938
939
940
941

942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965

forall 4, j € Tp where Z; # 0 and Z; # 0. Therefore,

2

20
th |B|th > ¢ §§2\B|

teB; teB;

P

IBI

which has a smaller failure probability if |B;| > 1. In other
words, the batch algorithm is stabler.

B.5 Batch Augmented Lagrangian Algorithm
With the basic augmented objective Eq. (2), we can extend it
to the batch case, i.e.,
sl

24
where F; is the batch-averaged loss defined in Eq. (5). After
decomposing the budget constraint into batches, the aug-

mented objective on the whole optimization process has to
be replaced by

Ly*®(o;ry) = E[F] — zphy +

([P Hz

B
Ly (0, 75 pror) = Z Ly (o5 1p) — zphy + o
b=1 "

which constrains the b-th-batch privacy cost by 7, and the
overall cost by py. Note that z; will be gradually reduced
to zero when the batch constraint is getting tighter. With the
Lagrangian multiplier z;, the batch scheduler will be allowed
to fetch needed budget slightly ignoring the constraint 7y,
Therefore, we can define pp, = fo({p(0t)}ten,) — 2pits tO
be the batch privacy cost supplemented by the Lagrangian
multiplier.

With the constraint decomposition, we can update the o
only using one batch loss L;"*(c; ;) independently if 7y, is
fixed. Then, we update r by optimizing Eq. (6), i.e.,

B A 2
L2(r; proy) = 2 : 15y — 1ll3 — b+ |7 ||2
b (] -
o 2 24y

We conceptually illustrate the enforcement of constraints
between batch budget r;, and the global budget py in Fig. 5.
The global budget allocation will be enforced to align the
total budget. However, the relation between the batch cost
and the batch budget are bi-directions. When we optimize
w.r.t. , the 1, will also be encouraged to align the j,. When
we optimize w.r.t. p; in batch b, the batch privacy cost will
be enforced to match the budget ry,.

In the unconstrained batch algorithm, we will use an one-
pass fashion to update the meta-model, i.e., the optimizer.
That means we do not need to store any batch data (except
for the meta-model) that has been used, which could greatly
reduce the space complexity. However, for budget constrained
L2P, we cannot directly drop the used batches, since the batch
state is essential to check if we need to adjust the constraint
to fulfill the budget requirement. In Fig. 5, the dependency is
represented by the interaction between the batch privacy cost
and the constraint.

Rather than a one-pass method, we suggest a two-pass
way to update the parameters. First, we update the meta-
models with one pass. Second, by fixing the meta-models,
we unroll the protected learning, update and store py, 23, and
p. With the recorded data, we minimize £L2¢(r; pyo) W.I.L. 7
and update corresponding AL variables.

Figure 5: Illustration of the privacy budget constraint in
batches. We strip the output of the protectors to be only
the privacy costs which are composed into the batch cost py
supplemented by the Lagrangian multiplier. The red arrows
between 7, and p; are the interaction during L2P optimiza-
tion where they will both be forced to match the value of the
other.

B.6 Optimality analysis
In this paper, we cast the searching for the optimal scheduler
as a learning problem. Formally, we minimize the objective:

Zt 1Itft
Zt 1It

We first assume Z; is a general weight function varying by ¢.
Recall the gradient of F'(o) w.r.t. o (Eq. (3)) is

Y1 L0fi i (f = F)IT,
Zthl Ly Zf,T:1 Ly

By vanishing the gradient, we can get the optimal condition
of the L2P objective.

We restrict the non-zero range of Z; within [T},
Define the weight a« = Zr, 1 /(Z1,-1 + Zr1,).

We first summarize the major results in Theorem B.2, with
which we can get an approximated convergence guarantee
to some (local or global) solution of our objective f. It gives
us the insight that the final gradient norm is upper bounded
by the covariance between the accumulated noise variables
(transformed by g1) and the final gradient. The upper bound

will be 1mpr0ved when we train the projector on a fixed
scheduler. In short words, to improve the utility, the projector
training have to denoise the protected updates which reduces
the covariance between the v; and the g;. And the covariance
between v; and f;41 is reduced meanwhile. As a result, we
will see Cr, 1 approaching zero.

Definition B.1 (L-smooth function). A differentiable objec-
tive function f : © x X — R is L-smooth over § € © with
respect to the norm ||-|| if for any = € X and 61,02 € ©, we
have:

E[F(0)] = [

OF (o) = 19)

~ 1,1,

966

967
968
969

971
972
973
974
975
976

977
978
979
980
981

IV f(01,2) = V[0,)|, < L6 — 2],
where ||-||, is the dual norm of ||-||. If ||-|| is lz-nrom, this
yields
F(01,2) = F(02,) < VT F(02,)00~ 02) + = 161 — 0ol

Theorem B.2 (Utility bound of a stationary L2P protector).
Suppose f is L-smooth and o is independent from the noise

983
984
985

986

987
988

989
990

992
993

variables vy. If the o is a stationary point of the constrained
optimization problem, the following is satisfied:

2L
E(QCTP_l + (1 — Q)CTP)7

(20)

E HVT/J_1H2 < Ung_lp -

where C, is a constant depending on the scheduler o
(Eq. (24)), Cr represents the covariance between the noise
and the true gradient (Eq. (32)) and O¢r, 1 is the upper

bound of reduced noise variance (Eq. (27)).

Proof. Generally, we assume the Z; be a function of ; whose
gradient is

8It N 8It 8ht

= 5y = oh 90

Let us first look into dht which is

A? 9o, 20, 0o
:—Z%gé——Z’lg

Ohy Z 0pr 0o,

Oo do, Oo
Ohy 3’% 1 2p 00
Do Oo oy Oo

if the ctCDP is utilized. Because Z; is always centered around
some real value ¢ for h;, = 0 (by continuous approxima-
tion), we may assume g—ﬁ of different signs on the different
sides of ¢g.

Let the gradient be zero and rearrange the variables.

7 Zztaft ——Z fo— F)OT,

where Zp = Zt 1 Z;. Let T, be the integer such that hT =
§>0and hy,_1 =& =& — pr < 0. Denote the left- hand-
side and rlght hand-side of Eq. (21) as lhs and rhs.

We restrict the non-zero range of Z, within [T},
Then,

ITP :1—’}/th=1—’)/§
Ir,1=1+~hg, 1 =1+~ =1+~ —vp1,

whose summation is 2 +y(§' — §) = 2 —ypr, and gradients
are:

2

~1,T,).

Oht, _ i 2p, 0o,

. 22
a TP ’y 80' —1 O'-,— aJ ()
T,-1
Ohp 4 — 2p; 0o,
SN e S . @3
a T,—1 Y 80’ 7; or 80' ()
Since o = Zr, 1 /(Zr,~1 +Ir,),
rhs = —*Z fr — 8It
1
_ _7[(1 —)0Ir,—1 — adIr,|(fr,-1 — f1,)
T

If o is independent from the noise variables v, e.g., uniform
schedule, the coefficient is a constant, i.e.,

1
Co = ———[(1 -a)dZr, 1 — adlr,] (24)
Zr
based on which we can get the expectation,
]E[rhs] = CUE[pr,1 - pr]. (25)
If f is L-smooth (Definition B.1),
T L 2
E [pr - pr_l] < E[va—lng_l + 5 ||gTP_1||]

Define (1 £ Lgp + V. Since 7 is just a variant of the SGD,
the direction of g7 should be opposite to the V. Therefore,

G = L(n(Vi+ o) — %)»

which represents the difference between the projected updates

(26)

(gr) and the gradient descent update with the step size %

A rational guess is that the (7, 1 is the residual noise noise
after the denoising operation, 7. Thus, it is rational to assume

the E ||¢z, 1| is bounded as

E¢r,f* < o2, _»

for some parameter O¢r, 1 depending on the scheduler where
p is the dimension of 6. Then

27)

1 1
gt = _th + ZCt’

which leads to

1 1
E(fr, = fr,1] € ~57E[Vr | + 3B o
0%, P
<7—]EHVT)P+ T

Thus,

E HVT,ﬁlH2 < U?TP,IP-F 2LE [fr,-1 — f1,]

p+ 2LE[rhs]/C,. (28)

2
= 9%¢r,
Thus, we complete the discussion of the rhs.
To the left-hand-side of Eq. (19), we first calculate the
derivatives of the loss functions,

o aat T agt
Ofr = (25 Y ‘e, Vr. (29)
Define a random variable as
doy +I(—gt)
T t,T
VT 8 v, 0, 30)

where the negative sign is added because g, is usually the
opposite to the V¢, for example, g o« —V; in SGD. Now we
substitute Egs. (29) and (30) into Eq. (19) to obtain

lhs = —aVy ,Vr,_1—(1—a)Vi V7.

994

995
996
997
998
999

1000
1001

For brevity, we rewrite the expectation as

Eflhs] = —aCr,—1 — (1 — a)Cr,, (31)
where we define
p
Co=E[V,",Vi] =Y Cov(Vie1.i, Vi), (32)

i=1

where we utilize EVp_1 = 0 because v is an i.i.d. Gaussian
random vector. Therefore, C; represents the covariance be-
tween two vectors and will be zero only when the two vectors
are uncorrelated. Combining Egs. (25), (28) and (31), we can
get Eq. (20). 0

Uniform scheduler. We assume the 0; = o where the
scheduler degrades as a constant o. Therefore, with Egs. (22)
and (23), we have

TP: [plot//ﬂ) gszp_ptot
Iy, :1*’75, Iy, 1 =14+~ p
2
oIr, —vT P oz ,1_—7(Tp_1);p

where p = A%/202. In addition, we have

fr, = F =olfr, = fr,-1)
pr—l —F= —(1 - oz)(pr - pr—l)-
Substitute what we have into Eq. (21) giving
1
ths = — [aT), + (1 — a)(T, — 1)]
Zr
= CO‘(pr—l - fT,,)a
where we update the constant C,, from Eq. (24) as
T,—(1-0a) 2py
2—qp o

If v € (0,2/p), then C, > 0. In our implementation, the
condition always holds since v = 1/pyor < 2/p.
Taking the expectations of lhs and rhs, we have:

—aCr, 1 — (1 —a)Cr, = C.E[fr,—1 — fr,],

where Cr is given by substituting % ‘9‘” = 1 into Eq. (30) and
its definition, i.e.,

Cr=E rzl i 1

Analysis of batch algorithm. Recall the objective for the
batch algorithm (Eq. (8)) is

’Y%(fT,fi - fr,)

Co =

(33)

B _
1 2 ZbGTB IbFz
ZQ 1o = rollz + 5
b=1 Mo Eijbe’fé b

where Zg = ZbeTB 7, and we use 7, to denote Z(hy).
Generally, we assume the batch budget is scheduled by pa-
rameterized model (-) or r for simplicity, e.g., LSTMs. In

LU%(r) =

addition assume AB=1,aa=1p, 1/Ip, 1 +1Ip,. Van-
1sh1ng L™ Causes
= F)oT,

1 N B, —
S Ly 2 - 2em EE
— or Zp

where Zp = EbeTB T, and we define the notation 7;° =

1 >_te, Tt for any variables ; related to the step t. In
addition, we need to make the gradient of batch objective be

Zero, i.e.,
>

tEBb

1 ofp 1

0=— 7 (Py — 1) (35)
o My

teB

where we let the batch size,
equalities hold in Egs. (34) and (35), we can extend non-
batch utility bound, Theorem B.2, to the batch version in
Theorem B.3. Compared to the non-batch result, the batch
utility bound is extended by the average of steps in batches.
For example, C is replaced by C.

Theorem B.3 (Utility bound of batch L2P protector). If f

is L-smooth and o and r are independent from the noise
variables vy, then we have:

—b
B,-1 2L~ C) oy

C 7
T b=1 Ca,t

— Bl
E[| V4| < pog, (36)

where Cy , is a constant depending on the scheduler o and
the batch b (Eq. (42)), C,. is a constant depending on the
batch scheduler r, C, represents the covariance between the
noise and the true gradient (Eq. (32)), and o¢, is the upper
bound of reduced noise variance (Eq. (27)).

Proof. We can easily get the derivative 07, based on
Egs. (22) and (23):

0Ip, = 37)

Still, we use lhs and rhs to denote the two sides of the Eq. (34).
From the non-batch analysis, we can extend Eq. (25) as

E[I’hS} = CTE[FBP,1 — FBp] (38)
CT = —L[(l — a)&IB -1 — a@IB] (39)
ZB P P

where we still assume 7(+) is independent from the private
noise which makes C'. constant.
Consider the case when the f is L-smooth. Thus,

forall tin Bp,. Averaging over t, we get:
E[Fp, —Fp, ,] < IE Y Vit IIgtII]
tEBBp_1
—B,—1
e N
—__REIV S S

1002
1003
1004
1005
1006
1007

1008
1009
1010
1011
1012

1013
1014

1015
1016

1017

1018
1019
1020

1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036

where we make use of (; defined in Eq. (26) and its bound in
Eq. (27). Combine this with Egs. (34) and (38) to get

B
——5B,—1 —B,—1 2L 1 N Brb
B[Vl " <pod "+ D e)
L b
(40)

To find the value of ;%b(rb — pp), we need to use Eq. (35)
which gives:

1 . 1 0
—(ry — pp) = S i; 41
b mCy bt do
T /)
Coo =—> 5 (42)
teBy

According to Egs. (29) and (30), it can be attained that

—b
1 . c!

E[—(ry —)] = ——= (43)
Hb (/Tt

where we modify Egs. (30) and (32) as

p
+
C=E[VL, Vi =) Cov(VL,; Vis)
i=1
0 o(—
=Y aityj (=9 1 cg,
teby i<t 07 Vy

Substituting it into Eq. (40), we can get Eq. (36). This thus
completes the proof. 0

B.7 Implementation details

In this section, we present the implementation details for the
the projector and scheduler models. We use the Long-Short
Term Memory (LSTM) networks as the backbone models.

Constrain Noise-Scale Prediction. To stablize the L2P
training, we explicitly constrain the range of the noise scale
by using a Sigmoid activation in the scheduler. In addition,
assuming the sigmoid output of the LSTM is y, we scale the
output as

Omin + 2(Ug - O'min)ya

which is constrained in (oyin, 204). The oy, is the lower
bound of noise scale which derived from the upper bound of
privacy budget, e.g., p, for (p, a)-ctCDP. The o is estimated
by uniformly scheduling budgets. Generally, we will expect
the predicted o is centered around o, and is not too large,
e.g., larger than 20,4, which will violate the utility greatly.
With the constraint, the noise prediction will not fluctuate
significantly.

Coordinate-wise LSTM. Following the implementation
in (Andrychowicz et al. 2016), we share the parameters
of LSTM for all optimized parameters. Therefore, a small
LSTM can work for optimizing large-scale neural networks.

Incremental Pre-training. Training an L2P model from
scratch may suffer from a great amount of DP noise such
that no useful information can be learned. For simple tasks,
pre-training without noise can mitigate this noise gap since

it could avoid some random optimization exploration at the
beginning. For complicated tasks, e.g., deep neural networks
or large-scale models, the gap between L2L models and high-
privacy L2P models can still be huge. The DP noise is added
without considering the scale of the model. Specifically, when
the size of model parameters increases and the scale of their
every coordinate decreases meanwhile, the DP noise will
not change if the clipping norm is fixed. Thus, the noise is
relatively amplified. Especially for deep models, the small
coordinates may greatly affect the model performance and
thus deep models are more sensitive to DP noise. Therefore,
neither a scratch nor an L2L. model could be robust enough
as an initialization for the L2P model. Instead, we suggest
an incremental pre-training in which the privacy scale € will
incrementally increase from O.

C Additional experiments
C.1 Quadratic optimization

Setup. To show the optimality of L2P training, we compare
different algorithms by non-privately tuning them. Formally,
given a fixed size of privacy budget, we train or tune a private
optimizer on the quadratic optimization problems:

60
ming £(0) = Y [[Wif — yill5 +0.001[|6]3 ,
=1

with random constants W; € R2*2 and y; € R? for i €
{1,...,60}. We note that the tuning/meta-training is non-
private such that we can see if the L2P can converge to the
best private optimizer on the auxiliary datasets in comparison
to baselines.

L2P-Proj (L2P with only projector) and L2P models are
trained independently. Hence we can see the effect of adap-
tive perturbation. All optimizers are only tested on identi-
cal W, y and initial variables. The L2P and L2P-Proj are
trained with normally randomized W and y for 200 epochs
after they are pre-trained without noise in the same way
and the best model are selected with the lowest loss when
their privacy budgets are used up in validation. The iteration
numbers for SGD-Adv and L2P-Proj are chosen in range
{10, 20, 30, 40, 50, 60} which are enough for convergence of
such quadratic problems. The step size is chosen from 0.001
to 0.02 with 20 choices for SGD-Adyv, while AGD uses the
line search in the same range with 20 choices.

Results. In Fig. 8, four optimization methods are com-
pared at the same (0.05, 10~%)-DP. As shown in Fig. 8, the
proposed L2P converges to the zone close to but not exactly at
the noise-free optimal solution. The optimization algorithms
stop before reaching the optimal, because of the imposed
budget constraint. Recall that the model at the optimal solu-
tion may leak sensitive information. We see that L2P guides
the optimization toward the optimal by adjusting the update
directions. More importantly, L2P-Proj reduces the noise
magnitude, uses more step budget but converges in less steps.
Because L2P-Proj has omitted no budget scheduler, it stop in
a different spot. In comparison, the SGD-Adv algorithm ran-
domly walks in a rather large region. Though AGD reduces
variances relatively, it barely finds the correct optimization
direction.

1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051

1052

1053

1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086

15 15 15
1.0 102 104
0.5 1 0.5 A 0.5
0.0 0.0 0.0

~0.51 ~0.51 ~0.51

~1.01 -1.01 ~1.01

-15 -15 -15
15 15 15
1.0 1.0 1.0
05 1 0.5 1 05 1
0.0 0.0 0.0

~0.51 ~0.51 ~0.51

~1.01 ~1.01 -1.01

-15 -15 -15
15 15 15
1.0 1.0 1.0
05 1 0.5 1 0.5 1
0.0 1 0.0 0.0

~0.51 ~0.51 ~0.51

~1.01 ~1.01 ~1.01

-15 -15 ' . ; -15

-1 0 1
15 15
1.0 1.0
0.5 1 0.5 1
0.0 0.0

~0.51 ~0.51 o

-1.01 -1.01 %, o, o -1.01

-15 -15 . . ; -15

-1 0 1
15 15 15
1.0 1.0 1.0
0.5 1 0.5 1 05 1
0.0 0.0 0.0
~0.51 ~0.51 ~0.51

~1.01 ~1.01 -1.01

-15 -15 -15
15 15 15
1.0 1.0 1.0
0.5 1 0.5 1 0.5 1
0.0 1 0.0 0.0

~0.51 ~0.51 ~0.51

s
~1.01 -1.01 ~1.01
-15 -15 ' . ; -15 . . ,
-1 0 1 -1 0 1
(a) SGD-Adv (b) AGD (c) L2P-Proj (d) L2P

Figure 6: Comparison of the convergence (€, 10~8)-DP with € varying as 0.05, 0.1,0.2, 0.4, 0.8, 1.6 from top to bottom.

1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098

1099
1100

1101
1102

1103
1104

—e— L2P —— AGD —»— OutPert —m— ObjPert —<— SGD-Adv —+— SGD-MA —— NonPrivate
IPUMS-US (SVM) IPUMS-BR (SVM) MNIST35 (SVM)
75 731 904
= 70
R 701 80
< 65
> 654
9 65 > o
5 60
o} 4
3 55 60
<> 5o 50
50
45 40 1
0.0125 0.025 0.05 0.1 0.2 0.4 0.8 0.0125 0.025 005 0.1 0.2 0.4 0.8 0.0125 0.025 0.05 0.1 0.2 0.4 0.8
3 3
2 24
@ 1
S
14 1 0.54
0.5 " . : : ; ; 0.5 -— " . : : : ; " - -
0.0125 0.025 0.05 0.1 0.2 0.4 0.8 0.0125 0.025 0.05 0.1 0.2 0.4 0.8 0.0125 0.025 0.05 0.1 0.2 0.4 0.8

£

&

£

Figure 7: Test performance (top) and training loss values (bottom) by varying € of SVMs classifiers on IPUMS and MNIST
datasets. The error bar presents the size of standard deviations. For better visualization of error bars, some virtual horizontal

offsets are added to every point.

NN N

Q \\
-
o [R—

[

oo s

(a) SGD-Adv

(b) AGD

(c) L2P-Proj (d) L2P

Figure 8: Comparisons of (0.05,10~%)-DP algorithms on a quadratic problem. Solid contour lines illustrate the loss values. The
trajectory distribution of 100 repeated optimizations are shown in blue shadowed contours. Sampled trajectories are plotted in

orange.

Additional quadratic optimization results for different € are
shown in Fig. 6. Because the quadratic problem uses very few
data and its gradients are in small scale, the optimization will
be very sensitive to the noise. In this case, SGD-Adv rarely
find the proper directions to go. In contrast, adaptive DP
algorithms perform better. L2P-Proj behaves similarly to the
L2P. However, when € gets smaller, L2P is capable to use the
budget more efficiently such that it can converge to a better
position. Meanwhile, L2P-Proj cannot adaptively adjust its
step budgets which make the execution length shorter. AGD
shows some ability to correct the noised directions but it fails
when the privacy constraint is higher.

C.2 Experiments of generalization to different
distributions

In this section, we provide additional experiments for evalu-
ating the generalization ability of L2P.

Experiments of SVMs. The results are reported in Fig. 7.
The results are similar to the Logistic.

C.3 C(lassification on MNIST35 datasets with
non-convex objectives and varying ¢

In addition to convex objectives, we also evaluate our mod-
els on a popular non-convex model, neural networks. The
evaluated network includes two layers of 20 and 2 units (for
binary classification), respectively. The layers are connected
with sigmoid activations. The loss is computed by the cross-
entropy function.

Different from logistic and SVM models, the patterns of
optimizing a neural network could be hard to learn for L2P.
The first issue is that the relative magnitude of noise w.r.t. the
gradient coordinates is enlarged when the size of the gradient
increases. For MNIST35 images of 28 x 28 = 784 pixels
and a network with 20 units in the first layer, the number
of connection weights could be 20 x 784 which is 20 times
of an SVM model. Since a constant L2 sensitivity, e.g., 2,
is expected, the gradient norm will be less than 2, which
makes each coordinate much smaller while the number of
coordinates increases. Meanwhile, the scale of noise will
not change for each coordinate, which means it increases in
a relative way. This issue makes private learning methods
hard to achieve the same utility performance under the same

1105
1106

1107
1108
1109
1110
1111
1112

1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126

1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
171
1172
1173
1174
1175
1176
1177
1178
1179
1180

privacy requirement. As a result, we adjust the clipping norm
to 2 which can slightly reduce the noise scale.

The second issue has been discussed in L2L (Andrychow-
icz et al. 2016). The optimization of the L2L or the L2P
projector will encounter numerical issues for that the weights
in different layers of the optimized networks have differ-
ent magnitude. Since the optimization often focuses on the
large elements, it will cause the optimizer barely updated
and thus no convergence can be witnessed. As suggested by
Andrychowicz et al.(Andrychowicz et al. 2016), either scal-
ing the gradient by logarithm and sign mapping or scaling
the output of the L2L by a constant can mitigate the issue.
The former method augments the insignificant information
in the gradients, while the second one resembles the learning
rate such that the predicted updates will not fluctuate too
much. To avoid that the gradient values are overwhelmed
by noise and the L2P model absorb useless information, we
recommend the latter method and use the scaling constant as
0.05.

In addition, optimizing small gradient coordinates with
noise could be challenging. Incremental pre-training intro-
duced in Appendix B.7 could reduce the hardness step by step
through the step could be flexible. For example, when trained
with € = 0.2, the L2P should be initialized by L2P without
noise. When trained with ¢ = 0.05, the L2P should be ini-
tialized by L2P with ¢ = 0.2 instead. Other experimental
settings follow the same principles in previous ones.

For a more precise trade-off between utility and privacy
losses, a tuning of the privacy loss coefficient is necessary. A
recommended range of the coefficient is {500, 1000, 5000}.
Using the training data to monitor the convergence curves
will be helpful for choosing a proper coefficient. Meanwhile,
the estimated number of iterations which determines the ini-
tial privacy cost should be selected in {30, 60, 100, 400}. For
a small €, a small iteration number will be more helpful for
the convergence.

In the last column of Fig. 3, we compare the DP € against
the utility metrics, accuracy and loss, on the MNIST35
dataset. The ObjPert and OutPert are excluded since it is
designed for convex problems only®. Because some methods
cannot converge in optimizing the network due to above-
mentioned computation difficulties with a large noise, we
adjust the range of e. It can be seen that for similar low pri-
vacy conditions, L2P can train models with higher accuracy
in most cases. The € of SGD-MA increases slowly after 0.8
and its left boundary is given when the the number of iter-
ation is 1, for which only a narrow range is available for
presentation.

Notably, when € > 0.6, the performance of SGD-MA is
better than other methods except the L2P and AGD, which
is quite distinct from previous experimental results. Because
SGD-MA is originally designed for optimizing deep mod-
els (Abadi et al. 2016), the moment accountant method is
used for calculating the privacy level € is more suitable for

Though the OutPert is claimed to be capable for nonconvex
problems with SGD algorithm (Zhang et al. 2017), the algorithm re-
quires a constant of 3-smoothness which can not be easily obtained
or designed for neural networks.

Table 1: Space and time complexity on different batch sizes.
#unroll represents the number of unrolled steps in L2P train-
ing. ‘full’ means a full unrolling in one batch while 40 and
20 denotes the sizes of mini-batches.

Memory (Mb)
#unroll full 40 20 full 40 20

200 474 282 250 19 21 21
400 730 282 250 41 90 89
600 1242 282 250 57 102 173

Epoch time (sec)

1000 1843 282 250 164 188 190
1200 2066 282 250 172 248 266
1600 2266 282 250 418 357 350

mini-batch optimization. In other words, the noise scale in-
creases slower by € using SGD-MA. Since the L2P uses the
same batch privacy estimation, it is rational to see the L2P
could share the benefit in optimization. When € > 0.8, SGD-
MA outperforms other methods. It is because the moment
accountant of privacy costs can lead to a tighter bound of
compositions than p-zCDP used by L2P and AGD when €
increases. But p-zCDP can provide a more convenient and
efficient way to compute the privacy cost explicitly. Moment
accountant has to compute the privacy cost by iterating over
the moment orders which is relatively slow. Though L2P does
not outperform in accuracies when € > 0.8, it has obviously
lower training losses. It means L2P can optimize the losses
better within less iterations, which might be local optimal,
though.

C.4 Scalability

When extending the meta-training of L2P from non-
constrained optimization to the constrained one, a critical
issue is the scalability of the algorithm. Here we compare the
time and space complexity of the batch and non-batch L2P
algorithms to give a view of the issue.

Setup. The memory usage is measured by the GPU mem-
ory through the ‘nvidia-smi’ command on a Ubuntu 16 sys-
tem with a TITAN X GPU and CUDA 10.1 driver. The pro-
gram is written using TensorFlow 1.157 and allocates memory
on need. The time is measured by the process time of one
epoch averaged on 100 epochs. We use a 4-layer MLP and
MNIST?2 dataset for demonstration of budget-constrained op-
timization of schedulers. Because the memory usage grows
nonlinearly due to the TensorFlow allocation, it is slightly
more (around 20 to 50 Mb) than the true value while the trend
is not affected.

Results. We empirically show the time and space com-
plexity versus the unrolling length in Table 1. We see that
the memory size increased quickly using the full batch while
mini-batch does not need extra memory. Instead, mini-batch
trade the memory with higher but acceptable time complex-
ity. Experiments for larger networks (e.g., 128 layers) are
included in the supplementary. Experimental results suggest
that when a longer unrolling and larger network (e.g., 1000

"https://www.tensorflow.org/

1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195

1196

1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220

https://www.tensorflow.org/

1221
1222
1223

1224

1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275

steps for 128-layer network) are needed, slowly increasing
the batch size will be beneficial to fit the algorithm into a
limited GPU memory.

D Discussion

a) Query Efficiency. In comparison to AGD (Lee and Kifer
2018), the proposed L2P requires fewer times in querying the
datasets to obtain the private model, because that AGD needs
to query the dataset at each regret. To see this, we assume
that the unit privacy cost of one query is €. At each iteration,
AGD conducts two queries, including one query for objective
and the other for the gradient, if no regrets occur. Once one
regret occurs, at least one additional query is required. On the
other hand, in L2P the regret query happens in the training
process of protector on auxiliary learning tasks: when a bad
gradient g; causes a lower loss at L,, the effects will be back-
propagated to the LSTM cells, as shown in Fig. 1. Since
there are no privacy concerns in training the protector, the
back-propagation is more accurate than the random objective
queries used in AGD.

b) From Noised Model Training to Optimizer Training.
In many learning algorithms, the noise-injected training, e.g.,
dropout training (Wager, Wang, and Liang 2013), has shown
to be a useful way to improve the robustness or generaliza-
tion of an algorithm. Especially if there are infinitely many
additional noised samples for training, the classification per-
formance can be improved against specific noise test envi-
ronment and both in linear space (Maaten et al. 2013) and in
nonlinear one (Hong, Chen, and Lin 2018). A critical differ-
ence between traditional noise-gradient-based DP algorithm
and noised training is the number of noised samples in noised
training or gradients in DP ®. Because the constraint of pri-
vacy budget, the allowed training step is limited. In other
words, the number of noised gradients is far away from in-
finity. Thus, the DP training can only result in a degraded
model.

Since, in DP, the noised component is the gradient which
is the input of an optimizer, we propose to improve the opti-
mizer by training it with noise. It is a direct extension of the
noised training except that we also train the noise variance
which is related to the privacy budget.
¢) The Denoising Effect of Utility Projector The projector
in L2P is a denoising post-processing step which does not
expose the original data, though. The guarantee is given in
Lemma A .4. Denoising is not new in this area which has been
studied in different directions. Recently, Balle and Wang en-
hanced the one-time query utility on Gaussian mechanism
by calibration and statical denoising (Balle and Wang 2018).
They proved that a scaling factor on the query result could
lead to a smaller expected distance between the private output
and the original one. Though their method is the analytic nois-
ing mechanism, it lacks necessary precise composition theory
for multiple queries (e.g., a learning algorithm) in compari-
son to their baseline moment accountants (Abadi et al. 2016).
Earlier, Barak et al. (Barak et al. 2007) and Hay et al. (Hay
et al. 2009) show that accurate estimation can be achieved

8Since noised samples can lead to noised gradients, we put them
in approximately equivalent position here.

by enforcing table releases and graph degree sequences to be
consistent. Karwa et al. make use of the knowledge of the
noise distribution to efficiently infer a DP graph. In addition,
the idea integrating prior into the Baysian inference from pri-
vate outputs is formulated in (Williams and Mcsherry 2010).
Bernstein et al. use Expectation-Maximization to denoise the
parameter of a class of probablisitc graphical model (Bern-
stein et al. 2017). When a target solution is sparse, it is also
possible to project linear regression model to a known [;-ball
which improves the resultant error.

Among these work, Balle and Wang’s work (Balle and
Wang 2018) and Lee and Kifer’s work (Lee and Kifer 2018)
is the first to adaptively perturb the outputs. Balle and Wang
chose to scale the outputs with a factor adapted to the size
of private outputs. This idea is also reflected in our adaptive
perturbation where the step noise variance is adjusted accord-
ing to the private gradient norm. Differently, the variance is
adaptively calibrated according to an additional query to an
alternative objective. Also, this is leveraged in our method
while the objective query happens in auxiliary training before
a private execution.

d) Protecting L2P Training Data. When there are very dif-
ficult learning tasks and hard to identify public auxiliary
learning tasks, one may want to use some private data for
auxiliary learning, which may cause privacy concerns when
using protector in the sensitive learning. In such a case, the
training of L2P protector should also be done in a private
learning setting, e.g., perturbing the gradients or objective
functions through classical privacy-preserving algorithms.
e) Choice of Auxiliary Tasks. The L2P protector as well
as the learning-to-learn (Andrychowicz et al. 2016) are in
fact performing transfer learning methods that gain gradient
knowledge from auxiliary tasks and apply to a target learning
task, with and without privacy consideration respectively. We
see from our experiments that even though arbitrary choices
of auxiliary tasks can deliver promising protectors, more
relevant ones can further bring significant performance gains.
This points out an important direction for future work, i.e.,
how to quantify the task relatedness so we can use high-
performance protectors for a given learning task.

f) The availability of a public auxiliary dataset similar
enough to the private one.

Prior than our paper, public dataset has been suggested for
tuning hyper-paramters of private learning algorithms (Wu
et al. 2017). However, they did not state how to access the
public data and the affect of using different auxiliary datasets.
Our method extend the setting for practical purpose. In prac-
tice, choosing public auxiliary dataset may not be a trivial
work which greatly affect the performance. Here, we show the
affects in experiments and with some primitive criteria, we
can select useful auxiliary dataset easily. More complicated
methods could be developed based on our primitive settings.
For example, use cross validation to verify the effectiveness
of the auxiliary datasets and extract more non-private infor-
mation from the target private datasets for accurate auxiliary
dataset selection.

More reasons can support the usage of auxiliary datasets in
private learning. First off, the availability of auxiliary datasets
is the main assumption of this paper and however this is a

1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334

1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356

rather common assumption used by other lines of work, such
as learning-to-learn (L2L), where the learning trajectories
from other tasks are leveraged. 2) Secondly, for most learn-
ing tasks in real-world there are similar publicly available
datasets, such as electornic medical records or computer vi-
sion tasks, on which we can construct auxiliary learning
tasks. 3) Moreover, the proposed L2P framework is learning
momentum experiences from other optimization problems,
instead of heavily relying on similar datasets, we therefore
can leverage a wide spectrum of auxiliary optimization tasks
of the same class. For example, a quadratic programming
(QP) task may benefit from optimization procedures of many
other QP, sometimes even a random QP problem of the same
size according to our empirical study (Fig. 2). 4) To evaluate
the influence of the choice of auxiliary datasets, an experi-
ment comparing different subsets of MNIST classes is con-
ducted in Fig. 4. The experiment is constructed to simulate
the scenario that both the auxiliary and protected datasets are
used for binary classification task with same losses. It turns
out that visually similar class sets, e.g., {4, 6} (auxiliary) to
{3,5} (protected), yields better accuracies while less similar
ones still show performance above the best baseline.

	Differential Privacy Metric
	Properties of (, a)-ctCDP
	Budget constraint from standard DP
	Noise mechanism
	Privacy amplification by subsampling

	Methodology supplementaries
	Model-based private learning
	Augmented Lagrangian algorithm
	Analysis of the gradients
	Optimality Stability
	Batch Augmented Lagrangian Algorithm
	Optimality analysis
	Implementation details

	Additional experiments
	Quadratic optimization
	Experiments of generalization to different distributions
	Classification on MNIST35 datasets with non-convex objectives and varying
	Scalability

	Discussion

