

A Differential Privacy Metric

The (ϵ, δ) -Differential Privacy is the most widely used privacy metric which is defined as

Definition A.1 (Differential Privacy (Dwork et al. 2006b; Dwork 2006; Dwork et al. 2006a)). Let \mathcal{D}^n be space of datasets including n samples. A randomized algorithm $M : \mathcal{D}^n \rightarrow \mathcal{Z}$ is (ϵ, δ) -DP if for all adjacent⁴ $D, D' \in \mathcal{D}^n$ and for all subset of outputs $S \subseteq \mathcal{Z}$, we have

$$P(M(D) \in S) \leq e^\epsilon P(M(D') \in S) + \delta.$$

If $\delta = 0$, then M achieves pure DP which is stronger than the case $\delta > 0$. To achieve better properties described in Section 3.1, we give a privacy guarantee by a new privacy metric and its proofs here.

A variant of DP is called ω -truncated ρ -Concentrated Differential Privacy (Bun et al. 2018) as follows.

Definition A.2 $((\rho, \omega)$ -tCDP). Let $\omega > 1$ and $\rho > 0$. A randomized algorithm $M : \mathcal{D}^n \rightarrow \mathbb{R}$ satisfied (ρ, ω) -tCDP if, for all adjacent inputs $d, d' \in \mathcal{D}^n$,

$$D_\alpha(M(d) \| M(d')) \leq \rho\alpha, \forall \alpha \in (1, \omega)$$

where $D_\alpha(\cdot \| \cdot)$ denotes the Rényi divergence (Rényi 1961) of order α .

The (ρ, ω) -tCDP provides nice properties for private learning as discussed in Section 3.1. The general usage can be found in the Algorithms 1 and 2. However, the privacy parameters, (ρ, ω) , have to be carefully initialized and chosen to satisfy their constraint.

In this section, we first summarize the properties of (ρ, a) -ctCDP and then provide proofs based on the theoretic results of (ρ, ω) -tCDP. Also, we show how to use the properties of the ctCDP to initialize the privacy parameters and add essential constraints in detail.

A.1 Properties of (ρ, a) -ctCDP

We suggest an a -constrained truncated ρ -CDP (or (ρ, a) -ctCDP) based on the (ρ, ω) -tCDP to provide a minimal example with tight composition bound, linear composition function and a simple Gaussian mechanism. It is defined in Definition 3.1. The proposal originates from the scenario where the privacy budget is constrained as a constant, typically as (ϵ, δ) -DP, and a series of properties are required for scalable gradient perturbation (Algorithm 1). Other than ctCDP, more complicated privacy metric can be used on demand. Here, we first summarize the theoretic results of ctCDP with proofs in the following sections. Note that most of the results are identical to tCDP by fixing ω as ω_a . The major difference lies on the Lemma A.5 where the noising mechanism is assumed to be derived from zCDP, resulting in a different constraint on ρ .

Lemma A.1 (Relation to (ϵ, δ) -DP). Suppose a randomized algorithm M satisfies (ρ_a, a) -ctCDP with $a = \log(1/\delta)/\epsilon$ and ρ_a defined in Definition 3.1. Then M satisfies (ϵ, δ) -DP.

⁴By adjacent, we mean the two datasets have only one different entry at most.

Lemma A.2 (Relation to tCDP). Suppose a randomized algorithm M satisfies (ρ, a) -ctCDP. Then M satisfies (ρ, ω_a) -tCDP where ω_a is defined in Definition 3.1. 742
743
744

Definition A.3 (Sensitivity). Given $f : \mathcal{D}^n \rightarrow \mathbb{R}^d$, the L_2 sensitivity of f , denoted by $\Delta_2(f)$ (or simply Δ) is defined as:

$$\Delta_2(f) = \max_{D, D'} \|f(D) - f(D')\|_2,$$

where D, D' are adjacent datasets. 745

Lemma A.3. The sensitivity of $\|\nabla_t\|_2^2$ is $\Delta_2(\|\nabla_t\|_2^2) = (2|D_t| - 1)C_g^2$. 746
747

Proof. By definition,

$$\begin{aligned} & \max_{D, D'} \left\| \|\nabla_t\|_2^2 - \|\nabla'_t\|_2^2 \right\|_2 \\ &= \max_{D, D'} \left\| \left\| \sum_i \nabla_{t,i} \right\|_2^2 - \left\| \sum_{i \neq m} \nabla_{t,i} \right\|_2^2 \right\|_2 \end{aligned}$$

where we assuming the m -th sample is eliminated from computing the gradient ∇'_t . Also, we have

$$\begin{aligned} \left\| \sum_i \nabla_{t,i} \right\|_2^2 &= \sum_{i,j} \nabla_{t,i}^\top \nabla_{t,j}, \\ \left\| \sum_i \nabla'_{t,i} \right\|_2^2 &= \sum_{i,j} \nabla_{t,i}^\top \nabla_{t,j} - 2 \sum_j \nabla_{t,m}^\top \nabla_{t,j} + \nabla_{t,m}^\top \nabla_{t,m}. \end{aligned}$$

Thus,

$$\begin{aligned} & \left\| \sum_i \nabla_{t,i} \right\|_2^2 - \left\| \sum_i \nabla'_{t,i} \right\|_2^2 \\ &= (2 \sum_j \nabla_{t,j} - \nabla_{t,m})^\top \nabla_{t,m} \end{aligned}$$

whose norm is lower than or equal to $(2|D_t| - 1)C_g^2$. Thus, $\Delta_2(\|\nabla_t\|_2^2) = (2|D_t| - 1)C_g^2$. 748
749

Lemma A.4 (Composition & Post-processing). Let two mechanisms be $M : \mathcal{D}^n \rightarrow \mathcal{Y}$ and $M' : \mathcal{D}^n \times \mathcal{Y} \rightarrow \mathcal{Z}$. Suppose M satisfies (ρ_1, a) -ctCDP and $M'(\cdot, y)$ satisfies (ρ_2, a) -ctCDP for $\forall y \in \mathcal{Y}$. Then, mechanism $M'' : \mathcal{D}^n \rightarrow \mathcal{Z}$ (defined by $M''(x) = M'(x, M(x))$) satisfies $(\rho_1 + \rho_2, a)$ -ctCDP. 750
751
752
753
754
755

The Lemma A.4 is directly given by tCDP when we transform ctCDP to tCDP with fixed ω_a (see Lemma A.2). 756
757

Instead of deriving a canonical noise mechanism for the ctCDP, we directly use the Gaussian mechanism theorem of zCDP and amplify its privacy cost in the form of ctCDP by subsampling. 758
759
760
761

Lemma A.5 (Gaussian mechanism for ρ -zCDP (Bun and Steinke 2016)). Let $f : \mathcal{D}^n \rightarrow \mathcal{Z}$ have sensitivity Δ . Define a randomized algorithm $M : \mathcal{D}^n \rightarrow \mathcal{Z}$ by

$$M(x) \leftarrow f(x) + \mathcal{N}(0, \sigma^2).$$

Then M satisfies $\frac{\Delta^2}{2\sigma^2}$ -zCDP. 762

Lemma A.6 ((ρ, a)-ctCDP from ρ -zCDP by privacy amplification through subsampling). *Let $\omega_a = (1+a) + \sqrt{a(a+1)}$. Let $\rho, q \in (0, 0.1]$, $n, N \in \mathcal{Y}$ with $q = n/N$ (sampling rate) and satisfy*

$$\log(1/q) \geq 3\rho(2 + \log_2(1/\rho)), \quad (9)$$

$$0 \leq \rho < \min \left\{ \frac{\log(1/q)}{4\omega_a}, \frac{\rho_a}{13q^2} \right\}. \quad (10)$$

Let $M : \mathcal{D}^n \rightarrow \mathbb{R}$ satisfy ρ -zCDP. Define the mechanism $M_s : \mathcal{D}^N \rightarrow \mathcal{Y}$ by $M_s(x) = M(x_S)$, where $x_S \in \mathcal{D}^N$ is the restriction of $x \in \mathcal{D}^N$ to the entries specified by a uniformly random subset $S \subseteq [N]$ with $|S| = n$.

The algorithm $M_s : \mathcal{D}^N \rightarrow \mathcal{Y}$ satisfies $(13q^2\rho, a)$ -ctCDP.

Remarkably, the Lemma A.6 assumes the sub-routine is ρ -zCDP. Since the subsampling-based privacy amplification happens after the noise mechanism, it is natural to use the Gaussian mechanism (Lemma A.5) which results in a zCDP privacy cost.

These privacy guarantees are derived from (ρ, ω) -tCDP by constraining the range of ρ and ω where ω is simply a constant. By sacrificing the flexibility of the privacy parameters, we can get a single parameter metric which is simple in notation. Moreover, by fixing the ω , we will be able to update the privacy parameters by gradient descent in meta-learning⁵.

In this paper, we apply the (ρ, a) -ctCDP to the gradient perturbation scenario (Algorithm 1) where the total privacy cost ρ_{tot} is constrained by (ϵ, δ) -DP. A completed pipeline of private learning includes initialization of the parameters based on the given privacy budget and the protected learning (Algorithm 1). For the convenience of implementation, we provide the detailed steps of the initialization in Algorithm 3 as supplementary to private learning. The algorithm is based on the ctCDP with subsampling. If subsampling is not used, only the step budget needs to be modified as $\rho_0 = \rho'_0$ with the upper bound $\rho_{ub} = \rho_a$.

A.2 Budget constraint from standard DP

Our motivation for proposing ctCDP is that existing private learning methods are typically compared by performance under a given privacy budget. Therefore, we first introduce a budget constraint using the standard DP, which is translated as bounds on the tCDP parameters.

Theorem A.1 (Transformation of tCDP to DP). *Suppose M satisfy (ρ, ω) -tCDP. Then, for all $\delta > 0$ and all $1 < \alpha \leq \omega$, M satisfies (ϵ, δ) -DP with*

$$\epsilon = \begin{cases} \rho + 2\sqrt{\rho \log(1/\delta)}, & \log(1/\delta) \leq (\omega - 1)^2\rho \\ \rho\omega + \frac{\log(1/\delta)}{\omega - 1}, & \log(1/\delta) \geq (\omega - 1)^2\rho \end{cases}$$

When ϵ and δ are fixed, we want to maximize the available budget ρ and fix ω_a . We consider $\log(1/\delta) \geq (\omega - 1)^2\rho$ to find the upper bound of ρ when ω can be maximized, as well. First, we solve the linear function of ρ , i.e., $\epsilon = \rho\omega + \frac{\log(1/\delta)}{\omega - 1}$, given some ω . Let

$$a \triangleq \log(1/\delta)/\epsilon$$

⁵Note that the composition of ω in (ρ, ω) -tCDP is not continuously differentiable if all sub-mechanisms have varying ω .

Algorithm 3 Private learning initialization.

(ϵ, δ) -DP, the number of learning iterations (T) estimated from non-private algorithms.

- 1: Transformation from DP to ctCDP (Lemma A.1): $a \leftarrow \log(1/\delta)/\epsilon$ and compute ρ_a and ω_a by Definition 3.1
- 2: $\rho_{tot} \leftarrow \rho_a$.
- 3: Estimate step budget by uniformly decomposing ρ_{tot} into T steps: $\rho'_0 \leftarrow \frac{\rho_{tot}}{T}$ (Lemma A.4).
- 4: Estimate a batch sampling rate q , e.g., $q \leftarrow (\sqrt{|D|} + 10)/|D|$.
- 5: $\rho_0 \leftarrow \frac{\rho'_0}{13q^2}$ (subsampling by Lemma A.6)
- 6: If ρ_0 and q do not satisfy Eqs. (9) and (10), re-estimate q by choosing the smaller solution to

$$\log(1/q) = 3 \frac{\rho_{tot}}{13q^2} (2 - \log_2(\frac{\rho'_0}{13q^2}))$$

$$\frac{\rho'_0}{13q^2} = \frac{\log(1/q)}{4\omega_a}.$$

Then re-compute ρ_0 using the new q .

- 7: Get the upper bound of step budgets: ρ_{ub} (Eq. (10)).
- 8: Compute noise scale by Lemma A.5:
- 9: estimated step noise: $\sigma_g = \Delta/\sqrt{2\rho_0}$
- 10: step noise lower bound: $\sigma_{min} = \Delta/\sqrt{2\rho_{ub}}$
- 11: Compute batch size $|D_t| \equiv \lfloor qn \rfloor$.
- 12: Output: $\rho_{tot}, \sigma_g, \sigma_{min}, q, |D_t|$

and denote the solution as

$$\rho_{tCDP} = \frac{\epsilon}{\omega} \left(1 - \frac{\log(1/\delta)/\epsilon}{\omega - 1} \right) = \frac{\epsilon(\omega - (a + 1))}{\omega(\omega - 1)}. \quad (11)$$

Now, we substitute the ρ_{tCDP} into $\log(1/\delta) \geq (\omega - 1)^2\rho$ to obtain

$$\begin{aligned} \omega &\geq (\omega - 1)(\omega - (a + 1)) \\ &\Rightarrow (1 + a) - \sqrt{a(a + 1)} \leq \omega \leq (1 + a) + \sqrt{a(a + 1)} \end{aligned}$$

By the definition of tCDP, $\rho_{tCDP} \geq 0$ and $\omega > \alpha > 1$. Thus,

$$\omega > 1 \text{ and } \omega \geq a + 1.$$

Because $a + 1 > (1 + a) - \sqrt{a(a + 1)}$ and $a > 0$, the only solution to $\log(1/\delta) = (\omega - 1)^2\rho$ is the upper bound. Now, we denote the upper bound of ω as

$$\omega_a \triangleq (1 + a) + \sqrt{a(a + 1)}$$

and substitute it into Eq. (11) to get

$$\rho_a \triangleq \epsilon \frac{\sqrt{a(a + 1)}}{((1 + a) + \sqrt{a(a + 1)})(a + \sqrt{a(a + 1)})} \quad (12)$$

which is also the solution of $\epsilon = \rho + 2\sqrt{\rho \log(1/\delta)}$.

Until now, we finish the proof of the bounds in Definition 3.1. In addition, it is straightforward to get that (ρ_a, ω_a) -tCDP is equivalent to (ρ_a, a) -ctCDP. Thus, we have the Lemma A.1. We can further extend it for $\rho < \rho_a$.

Lemma A.7 $((\rho, a)\text{-ctCDP to } (\epsilon, \delta)\text{-DP})$. Suppose a randomized algorithm M satisfy $(\rho, a)\text{-ctCDP}$ for $0 < \rho \leq \rho_a$ and $a > 0$, then M satisfies $(\epsilon, \delta)\text{-tCDP}$ with

$$\epsilon = \frac{(\omega_a - 1)\omega_a}{\omega_a - a - 1} \rho, \quad \delta = \exp(-a\epsilon).$$

801 A.3 Noise mechanism

802 The canonical noise for tCDP is a Gaussian noise reshaped
803 by a sinh function. We restate the theorem by rearranging the
804 variables.

Theorem A.2 (Sinh-Normal mechanism for $(\rho, \omega)\text{-tCDP}$
(Bun et al. 2018)). Let $f : \mathcal{D}^n \rightarrow \mathcal{Z}$ has sensitivity Δ .
Let $\rho = \frac{8\Delta^2}{\sigma^2}$, ω satisfy $\frac{1}{4\omega^2} \leq \rho < 16$ and $A = 8\Delta\omega$. Define
a randomized algorithm $M : \mathcal{D}^n \rightarrow \mathcal{Z}$ by

$$M(x) \leftarrow f(x) + A \operatorname{arsinh}\left(\frac{1}{A} \mathcal{N}(0, \sigma^2)\right).$$

805 Then M satisfies $(\rho, \omega)\text{-tCDP}$.

806 If $\omega \rightarrow \infty$, then $A \rightarrow \infty$ in which case the $(\rho, \omega =$
807 $\infty)\text{-tCDP}$ is just $\rho\text{-zCDP}$ and the Sinh-Normal distribution
808 degrades as the normal distribution. However, due to the
809 truncation of ω , the privacy cost, i.e., $\frac{8\Delta^2}{\sigma^2}$, is not as optimal
810 as $\rho\text{-zCDP}$. Therefore, we use the noise mechanism of $\rho\text{-zCDP}$
811 (Lemma A.5) when $\omega \rightarrow \infty$.

812 A.4 Privacy amplification by subsampling

813 In stochastic gradient descent, a batch of data subsampled
814 from the whole dataset is used to update models. It is criti-
815 cal for implementing scalable learning algorithms. Because
816 of the randomness of subsampling, it provably reduce the
817 privacy cost. Technically, there are two ways to subsample
818 the batch. One is random sampling without replacement or
819 reshuffling (RF) which is widely used in the non-private deep
820 learning. Yu et al. (2019) proved the composed privacy cost
821 is the maximum of batch costs in one RF epoch. Numerically,
822 each batch is $q\rho\text{-zCDP}$ if the full batch cost is ρ and batch
823 sample rate is q . In this case, the dynamic budget allocation
824 for batches within one epoch is always worse than the
825 uniform schedule.

826 The other strategy is the random sampling with replace-
827 ment (RS), for example, in SGD-MA for the private deep
828 learning (Abadi et al. 2016). Compared to RF, RS injects
829 more randomness and therefore scale down the privacy cost
830 more (Yu et al. 2019), for example, a q^2 factor in the MA.
831 The lack of privacy amplification for RS motivates the de-
832 velopment of extensions. Both tCDP (Bun et al. 2018) and
833 the modified zCDP (Yu et al. 2019) spot the issue theoreti-
834 cally and provide similar solutions by truncating the order of
835 Rényi divergence. A privacy amplification of tCDP is given
836 by Theorem A.3.

Theorem A.3 (Privacy amplification by subsampling for
837 $(\rho, \omega)\text{-tCDP}$). Let $\rho, q \in (0, 0.1]$ and positive integers n, N
838 with $q = n/N$ and $\log(1/q) \geq 3\rho(2 + \log_2(1/\rho))$. Let $M : \mathcal{D}^n \rightarrow \mathbb{R}$ satisfy
839 $(\rho, \omega')\text{-tCDP}$ for $\omega' \geq \frac{1}{2\rho} \log(1/q) \geq 3$.
840 Define the mechanism $M_s : \mathcal{D}^N \rightarrow \mathcal{Y}$ by $M_s(x) = M(x_S)$,

842 where $x_S \in \mathcal{D}^N$ is the restriction of $x \in \mathcal{D}^N$ to the en-
843 tries specified by a uniformly random subset $S \subseteq [N]$ with
844 $|S| = n$.

845 The algorithm $M_s : \mathcal{D}^N \rightarrow \mathcal{Y}$ satisfies $(13q^2\rho, \omega'')\text{-tCDP}$
846 for $\omega'' = \frac{\log(1/q)}{4\rho}$.

847 In comparison, the modified zCDP does not have a strict
848 theoretic proof of the scale factor of the privacy cost but
849 empirically shows that $q^2\rho$ works for a wide range of ρ . Here,
850 we use tCDP to derive the range of privacy parameters.

851 In Theorem A.3, ω'' is a variable depending on the ρ rather
852 than ω' . Thus, we let $\omega' \rightarrow \infty$ to degrade $(\rho, \omega')\text{-tCDP}$ as
853 $\rho\text{-zCDP}$ when $\rho \in (0, 16)$.

854 Recall our target is to simplify the tCDP by eliminat-
855 ing ω . Because the subsampled mechanism also satisfies
856 $(13q^2\rho, \omega_a)\text{-tCDP}$ if $\omega_a \leq \omega''$, we constrain ρ as

$$\rho \leq \min \left\{ \frac{\log(1/q)}{4\omega_a}, \frac{\log(1/q)}{6}, \frac{\rho_a}{13q^2} \right\} \quad (13)$$

857 where $\frac{\rho_a}{13q^2}$ comes from the constraint of $(\rho, a)\text{-ctCDP}$ on
858 $13q^2\rho$. Typically, when $\omega_a > 1.5$, the $\log(1/q)/6$ can be
859 ignored. Because 1.5 is too small to reach for ω_a in practice,
860 we may assume it is satisfied generally.

B Methodology supplementaries

B.1 Model-based private learning

861 Here, we provide the formal statement and proof of Theo-
862 rem 4.1.

Theorem B.1 (Privacy guarantee of model-based gradient
863 descent). Suppose a gradient-based algorithm **Algorithm 1**
864 is protected by **Algorithm 2** and $\sigma(\cdot)$ and $\pi(\cdot)$ are crafted
865 fully independently from the private data. The output of the
866 algorithm, i.e., θ_T (assuming the loops stop at step T), is
867 $\hat{\rho}\text{-ctCDP}$ where $\hat{\rho} \leq \rho_{\text{tot}}$, if $f_C(\cdot)$, $f_S(\cdot)$ and $\rho(\cdot)$ are defined
868 based on ctCDP properties (Lemmas A.4 to A.6).

869 *Proof.* For brevity, we omit the a in notations. Denote
870 the sub-routine defined in **Algorithm 2** is $g_t, \rho_t, z_{t+1} =$
871 $M_t(\nabla_t, z_t)$ where z_t denotes the hidden states. Then each
872 iteration of private learning in **Algorithm 1** can be abstracted
873 as $\theta_{t+1}, z_{t+1} = A_t(\theta_t, g_t, z_t, \rho_t)$. Because of the linear com-
874 position, Lemma A.4, the condition $f_C(\rho_{1:t}) > \rho_{\text{tot}}$ can be
875 justified by $\rho_{\text{residual}} > 0$ where $\rho_{\text{residual}} \leftarrow \rho_{\text{residual}} - \rho_t$.

876 By rearranging variables, without changing the meaning
877 of the mappings, we can write the iteration as $\theta_{t+1}, z_{t+1} =$
878 $A_t(M_t(\theta_t, z_t))$ where d denotes the private batch data. Sup-
879 pose (θ_t, z_t) is $\hat{\rho}_t\text{-ctCDP}$ w.r.t. the dataset and the mapping
880 $M_t(\cdot, \cdot)$ is $\rho_t\text{-ctCDP}$ w.r.t. the dataset. Thus, according to
881 Lemma A.4, $\theta_{t+1}, z_{t+1} = A_t(M_t(\theta_t, z_t))$ is $\hat{\rho}_{t+1}\text{-ctCDP}$
882 where $\hat{\rho}_{t+1} = \hat{\rho}_t + \rho_t$.

883 Next, we show $M_t(\cdot, \cdot)$ is $\rho_t\text{-ctCDP}$ for $t \leq T$ and some
884 $\rho_t < \infty$. According to Lemma A.5, the noised gradient is
885 $1/2\sigma_t^2\text{-zCDP}$ and the noised gradient norm is $1/2\sigma_g^2\text{-zCDP}$
886 (note its sensitivity is proved by Lemma A.3). Further using
887 the Lemma A.6, we can compute

$$\rho_t = 13q^2 \left(\frac{1}{2\sigma_t^2} + \frac{1}{2\sigma_g^2} \right) < \infty$$

883 if σ_t and σ_g are non-zero.

884 Now we show $A_1(M_1(\theta_1, z_1))$ is ρ_1 -ctCDP. Typically,
885 θ_1, z_1 are randomly initialized or constantly zero which
886 are independent from the dataset. Therefore, (θ_1, z_1) is
887 0-ctCDP. By [Lemma A.4](#), because $M_1(\cdot, \cdot)$ is ρ_1 -ctCDP,
888 $A_1(M_1(\theta_1, z_1))$ is ρ_1 -ctCDP.

In summary, the output of model-based private learning,
i.e., $\theta_T = A_T(M_T(\theta_T, z_T))$ (omitting z_{T+1}), is $\hat{\rho}_T$ -ctCDP
where

$$\hat{\rho}_T = \hat{\rho}_{T-1} + \rho_T = \sum_{i=1}^T \rho_i \leq \rho_{\text{tot}}.$$

889 \square

890 B.2 Augmented Lagrangian algorithm

891 Given $\mu_0 > 0$, tolerance $\tau_0 > 0$ ([Nocedal and Wright 1999](#))
892 (Chapter 17), starting point σ_0 and λ^0 , the variables are iter-
893 atively updated:

1. Line search s such that σ^+ is an approximate minimizer
of \mathcal{L}_{aug} (the gradient norm is less than τ_k):

$$\sigma^+ = \sigma - s \left[\nabla_\sigma F(T, \sigma_T) + \frac{dh}{d\sigma}(z - h(\sigma)/\mu) \right] \quad (14)$$

2. If the final convergence criteria satisfied, stop with approx-
imate solution σ

3. Update Lagrange multiplier:

$$z^+ = z - h(\sigma^+)/\mu \quad (15)$$

4. Choose new penalty parameter $\mu^+ \in (0, \mu)$.

897 where s is the step size and we let σ be a vec-
898 tor $[\sigma_1, \dots, \sigma_T]^\top$ or constant scalar. The update on σ^+
899 can be replaced by another line search, i.e., $\sigma^+ =$
900 $\arg \min_{\sigma'} \mathcal{L}_{\text{arg}}(\sigma'(s))$ where $\sigma'(s)$ is given by [Eq. \(14\)](#). In
901 practice, we want to avoid the second time of unrolling σ
902 because it is required in [Eq. \(15\)](#). To fix this issue, we proceed
903 with steps 3, 4, first and then finally perform step 1.

904 B.3 Analysis of the gradients

A generic gradient descent method can be summarized as a set of sequential updates on the parameter θ , i.e.,

$$\begin{aligned} \theta_T &= \theta_1 + \sum_{t=1}^{T-1} g_t \\ &= \theta_1 + \sum_{t=1}^{T-1} \pi(\nabla_t + \sigma_t \nu_t), \quad \nu_t \sim \mathcal{N}(0, I). \end{aligned}$$

Assume $\frac{\partial \sigma_t}{\partial \sigma_{t-1}} = 0$ and $\frac{\partial g_t}{\partial \sigma_{t-1}} = 0$. Therefore, we can compute the gradient w.r.t. σ_t as

$$\begin{aligned} \frac{\partial f_T}{\partial \sigma_t} &= \frac{\partial \tilde{\nabla}_t}{\partial \sigma_t} \frac{\partial g_t}{\partial \tilde{\nabla}_t} \frac{\partial f_T}{\partial \theta_T} \\ &= \nu_t^\top \frac{\partial \pi(\tilde{\nabla}_t)}{\partial \tilde{\nabla}_t} \nabla_T \end{aligned} \quad (16)$$

$$\begin{aligned} &= \frac{1}{\sigma_t} (\tilde{\nabla}_t - \nabla_t)^\top \frac{\partial \pi(\tilde{\nabla}_t)}{\partial \tilde{\nabla}_t} \nabla_T \\ &\approx \frac{1}{\sigma_t} (\pi(\tilde{\nabla}_t) - \pi(\nabla_t))^\top \nabla_T \end{aligned} \quad (17)$$

where $\tilde{\nabla}_t = \nabla_t + \sigma_t \nu_t$ and we approximate in the last term by Taylor expansion. Taking expectation, we can see from [Eq. \(16\)](#) that the gradient is related to the covariance between the noise ν_t and the final gradient ∇_T . Intuitively, if $\frac{\partial \sigma_t}{\partial \sigma_{t-1}} = 0$ and $\frac{\partial g_t}{\partial \sigma_{t-1}} = 0$, the gradient updates on σ_t will increase a lot when $t \ll T$. Together with the observation in [Eq. \(17\)](#), it can be witnessed that the scheduler is decided by the denoising effect of the π .

In our implementation, we use an RNN to model the π and σ which could greatly denoise the updates according to its memory. Furthermore, in [Appendix B.6](#), we give an exact bound of the utility which closely relate the scheduler and projector together.

918 B.4 Optimality Stability

The optimality of learning scheduler is achieved by vanishing the gradient in [Eq. \(3\)](#). If both of the two terms in [Eq. \(3\)](#) are zero, the second term will be quite unstable since the f_t and \hat{F} are random variables. Especially when the expectation of the gradient is estimated by only few samples, the instability will be a major issue. Here, we focus on the second term and analyze the probability for it to be zero. Assume the optimization of f has converged and the expectation of the gradient is estimated by one sample.

Non-batch algorithms. An optimal case for the non-batch algorithm is $f_t = f_{t'}$ for all $t, t' \in \mathcal{T}$ where $\mathcal{I}_t \neq 0$ and $\mathcal{I}_{t'} \neq 0$. By convergence, we assume the expected loss values cannot be decreased any more since the private updates are totally governed by the noise instead of gradients. Therefore, we can further assume the losses are identically independently distributed with variance $\text{Var}[f_t] \equiv \sigma_f^2$. According to the Chebyshev's inequality, we have, for a constant ξ ,

$$P(|f_{t'} - f_t| > \xi) \leq \frac{2\sigma_f^2}{\xi^2}$$

which does not vanish since σ_f is non-zero due to private noise. That means only using one optimization process can barely reach the zero gradient condition.

Batch algorithms. The condition $f_t = f_{t'}$ can be easily extended to the batch case, i.e.,

$$\frac{1}{|\mathcal{B}_j|} \sum_{t \in \mathcal{B}_j} f_t = \frac{1}{|\mathcal{B}_i|} \sum_{t \in \mathcal{B}_i} f_t \quad (18)$$

for all $i, j \in \mathcal{T}_B$ where $\mathcal{I}_i \neq 0$ and $\mathcal{I}_j \neq 0$. Therefore,

$$P \left(\left| \frac{1}{|\mathcal{B}_i|} \sum_{t \in \mathcal{B}_i} f_t - \frac{1}{|\mathcal{B}_i|} \sum_{t \in \mathcal{B}_i} f_t \right| > \xi \right) \leq \frac{2\sigma_f^2}{\xi^2 |\mathcal{B}_i|}$$

which has a smaller failure probability if $|\mathcal{B}_i| > 1$. In other words, the batch algorithm is stabler.

B.5 Batch Augmented Lagrangian Algorithm

With the basic augmented objective Eq. (2), we can extend it to the batch case, i.e.,

$$L_b^{\text{aug}}(\sigma; r_b) = \mathbb{E}[\bar{F}_i] - z_b h_b + \frac{\|h_b\|_2^2}{2\mu_b}$$

where \bar{F}_i is the batch-averaged loss defined in Eq. (5). After decomposing the budget constraint into batches, the augmented objective on the whole optimization process has to be replaced by

$$\mathcal{L}_b^{\text{aug}}(\sigma, r; \rho_{\text{tot}}) = \sum_{b=1}^B L_b^{\text{aug}}(\sigma; r_b) - z_r h_r + \frac{\|h_r\|_2^2}{2\mu_r},$$

which constrains the b -th-batch privacy cost by r_b and the overall cost by ρ_{tot} . Note that z_b will be gradually reduced to zero when the batch constraint is getting tighter. With the Lagrangian multiplier z_b , the batch scheduler will be allowed to fetch needed budget slightly ignoring the constraint r_b . Therefore, we can define $\hat{\rho}_b = f_C(\{\rho(\sigma_t)\}_{t \in \mathcal{B}_b}) - z_b \mu_b$ to be the batch privacy cost supplemented by the Lagrangian multiplier.

With the constraint decomposition, we can update the σ only using one batch loss $L_b^{\text{aug}}(\sigma; r_b)$ independently if r_b is fixed. Then, we update r by optimizing Eq. (6), i.e.,

$$\mathcal{L}^{\text{aug}}(r; \rho_{\text{tot}}) = \sum_{b=1}^B \frac{\|\hat{\rho}_b - r_b\|_2^2}{2\mu_b} - z_r h_r + \frac{\|h_r\|_2^2}{2\mu_r}$$

We conceptually illustrate the enforcement of constraints between batch budget r_b and the global budget ρ_{tot} in Fig. 5. The global budget allocation will be enforced to align the total budget. However, the relation between the batch cost and the batch budget are bi-directions. When we optimize w.r.t. r , the r_b will also be encouraged to align the $\hat{\rho}_b$. When we optimize w.r.t. ρ_{tot} in batch b , the batch privacy cost will be enforced to match the budget r_b .

In the unconstrained batch algorithm, we will use an one-pass fashion to update the meta-model, i.e., the optimizer. That means we do not need to store any batch data (except for the meta-model) that has been used, which could greatly reduce the space complexity. However, for budget constrained L2P, we cannot directly drop the used batches, since the batch state is essential to check if we need to adjust the constraint to fulfill the budget requirement. In Fig. 5, the dependency is represented by the interaction between the batch privacy cost and the constraint.

Rather than a one-pass method, we suggest a two-pass way to update the parameters. First, we update the meta-models with one pass. Second, by fixing the meta-models, we unroll the protected learning, update and store $\hat{\rho}_b$, z_b and μ_b . With the recorded data, we minimize $\mathcal{L}^{\text{aug}}(r; \rho_{\text{tot}})$ w.r.t. r and update corresponding AL variables.

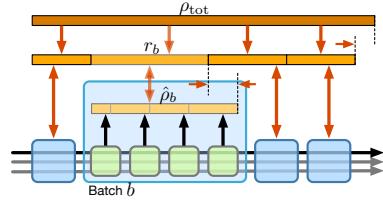


Figure 5: Illustration of the privacy budget constraint in batches. We strip the output of the protectors to be only the privacy costs which are composed into the batch cost $\hat{\rho}_b$ supplemented by the Lagrangian multiplier. The red arrows between r_b and $\hat{\rho}_b$ are the interaction during L2P optimization where they will both be forced to match the value of the other.

B.6 Optimality analysis

In this paper, we cast the searching for the optimal scheduler as a learning problem. Formally, we minimize the objective:

$$\mathbb{E}[\hat{F}(\sigma)] = \mathbb{E} \left[\frac{\sum_{t=1}^T \mathcal{I}_t f_t}{\sum_{t=1}^T \mathcal{I}_t} \right].$$

We first assume \mathcal{I}_t is a general weight function varying by t . Recall the gradient of $\hat{F}(\sigma)$ w.r.t. σ (Eq. (3)) is

$$\partial \hat{F}(\sigma) = \frac{\sum_{t=1}^T \mathcal{I}_t \partial f_t}{\sum_{t=1}^T \mathcal{I}_t} + \frac{\sum_{t=1}^T (f_t - \hat{F}) \partial \mathcal{I}_t}{\sum_{t=1}^T \mathcal{I}_t}. \quad (19)$$

By vanishing the gradient, we can get the optimal condition of the L2P objective.

We restrict the non-zero range of \mathcal{I}_t within $[T_\rho - 1, T_\rho]$. Define the weight $\alpha = \mathcal{I}_{T_\rho-1}/(\mathcal{I}_{T_\rho-1} + \mathcal{I}_{T_\rho})$.

We first summarize the major results in Theorem B.2, with which we can get an approximated convergence guarantee to some (local or global) solution of our objective f . It gives us the insight that the final gradient norm is upper bounded by the covariance between the accumulated noise variables (transformed by $\frac{\partial g_t}{\partial \nabla_t}$) and the final gradient. The upper bound will be improved when we train the projector on a fixed scheduler. In short words, to improve the utility, the projector training have to denoise the protected updates which reduces the covariance between the ν_t and the g_t . And the covariance between ν_t and f_{t+1} is reduced meanwhile. As a result, we will see $\mathbb{C}_{T_\rho-1}$ approaching zero.

Definition B.1 (*L*-smooth function). A differentiable objective function $f : \Theta \times \mathcal{X} \rightarrow \mathbb{R}$ is *L*-smooth over $\theta \in \Theta$ with respect to the norm $\|\cdot\|$ if for any $x \in \mathcal{X}$ and $\theta_1, \theta_2 \in \Theta$, we have:

$$\|\nabla f(\theta_1, x) - \nabla f(\theta_2, x)\|_* \leq L \|\theta_1 - \theta_2\|,$$

where $\|\cdot\|_*$ is the dual norm of $\|\cdot\|$. If $\|\cdot\|$ is l_2 -norm, this yields

$$f(\theta_1, x) - f(\theta_2, x) \leq \nabla^\top f(\theta_2, x)(\theta_1 - \theta_2) + \frac{L}{2} \|\theta_1 - \theta_2\|^2.$$

Theorem B.2 (Utility bound of a stationary L2P protector). Suppose f is *L*-smooth and σ is independent from the noise

variables ν_t . If the σ is a stationary point of the constrained optimization problem, the following is satisfied:

$$\mathbb{E} \|\nabla_{T_\rho-1}\|^2 \leq \sigma_{\zeta_{T_\rho-1}}^2 p - \frac{2L}{C_\sigma} (\alpha \mathbb{C}_{T_\rho-1} + (1-\alpha) \mathbb{C}_{T_\rho}), \quad (20)$$

where C_σ is a constant depending on the scheduler σ (Eq. (24)), \mathbb{C}_T represents the covariance between the noise and the true gradient (Eq. (32)) and $\sigma_{\zeta_{T_\rho-1}}$ is the upper bound of reduced noise variance (Eq. (27)).

Proof. Generally, we assume the \mathcal{I}_t be a function of h_t whose gradient is

$$\partial \mathcal{I}_t = \frac{\partial \mathcal{I}_t}{\partial \sigma} = \frac{\partial \mathcal{I}_t}{\partial h_t} \frac{\partial h_t}{\partial \sigma}.$$

Let us first look into $\frac{\partial h_t}{\partial \sigma}$ which is

$$\begin{aligned} \frac{\partial h_t}{\partial \sigma} &= \sum_{\tau=1}^t \frac{\partial \rho_\tau}{\partial \sigma} \frac{\partial \sigma_\tau}{\partial \sigma} = - \sum_{\tau=1}^t \frac{\Delta^2}{\sigma_\tau^3} \frac{\partial \sigma_\tau}{\partial \sigma} = - \sum_{\tau=1}^t \frac{2\rho_\tau}{\sigma_\tau} \frac{\partial \sigma_\tau}{\partial \sigma} \\ \frac{\partial h_t}{\partial \sigma} &= \frac{\partial h_{t-1}}{\partial \sigma} - \frac{2\rho_t}{\sigma_t} \frac{\partial \sigma_t}{\partial \sigma} \end{aligned}$$

if the ctCDP is utilized. Because \mathcal{I}_t is always centered around some real value t_0 for $h_{t_0} = 0$ (by continuous approximation), we may assume $\frac{\partial \mathcal{I}_t}{\partial h_t}$ of different signs on the different sides of t_0 .

Let the gradient be zero and rearrange the variables.

$$\frac{1}{Z_T} \sum_{t=1}^T \mathcal{I}_t \partial f_t = - \frac{1}{Z_T} \sum_{t=1}^T (f_t - \hat{F}) \partial \mathcal{I}_t \quad (21)$$

where $Z_T = \sum_{t=1}^T \mathcal{I}_t$. Let T_ρ be the integer such that $h_{T_\rho} = \xi > 0$ and $h_{T_\rho-1} = \xi' = \xi - \rho_T < 0$. Denote the left-hand-side and right-hand-side of Eq. (21) as lhs and rhs.

We restrict the non-zero range of \mathcal{I}_t within $[T_\rho - 1, T_\rho]$. Then,

$$\begin{aligned} \mathcal{I}_{T_\rho} &= 1 - \gamma h_{T_\rho} = 1 - \gamma \xi \\ \mathcal{I}_{T_\rho-1} &= 1 + \gamma h_{T_\rho-1} = 1 + \gamma \xi' = 1 + \gamma \xi - \gamma \rho_{T_\rho} \end{aligned}$$

whose summation is $2 + \gamma(\xi' - \xi) = 2 - \gamma \rho_{T_\rho}$ and gradients are:

$$\partial \mathcal{I}_{T_\rho} = -\gamma \frac{\partial h_{T_\rho}}{\partial \sigma} = \gamma \sum_{\tau=1}^{T_\rho} \frac{2\rho_\tau}{\sigma_\tau} \frac{\partial \sigma_\tau}{\partial \sigma} \quad (22)$$

$$\partial \mathcal{I}_{T_\rho-1} = \gamma \frac{\partial h_{T_\rho-1}}{\partial \sigma} = -\gamma \sum_{\tau=1}^{T_\rho-1} \frac{2\rho_\tau}{\sigma_\tau} \frac{\partial \sigma_\tau}{\partial \sigma}. \quad (23)$$

Since $\alpha = \mathcal{I}_{T_\rho-1}/(\mathcal{I}_{T_\rho-1} + \mathcal{I}_{T_\rho})$,

$$\begin{aligned} \text{rhs} &= - \frac{1}{Z_T} \sum_{t=1}^T (f_t - \hat{F}) \partial \mathcal{I}_t \\ &= - \frac{1}{Z_T} [(1-\alpha) \partial \mathcal{I}_{T_\rho-1} - \alpha \partial \mathcal{I}_{T_\rho}] (f_{T_\rho-1} - f_{T_\rho}) \end{aligned}$$

If σ is independent from the noise variables ν_t , e.g., uniform schedule, the coefficient is a constant, i.e.,

$$C_\sigma = -\frac{1}{Z_T} [(1-\alpha) \partial \mathcal{I}_{T_\rho-1} - \alpha \partial \mathcal{I}_{T_\rho}] \quad (24)$$

based on which we can get the expectation,

$$\mathbb{E}[\text{rhs}] = C_\sigma \mathbb{E}[f_{T_\rho-1} - f_{T_\rho}]. \quad (25)$$

If f is L -smooth (Definition B.1),

$$\mathbb{E}[f_{T_\rho} - f_{T_\rho-1}] \leq \mathbb{E}[\nabla_{T_\rho-1}^\top g_{T_\rho-1} + \frac{L}{2} \|g_{T_\rho-1}\|^2].$$

Define $\zeta_T \triangleq L g_T + \nabla_T$. Since π is just a variant of the SGD, the direction of g_T should be opposite to the ∇_T . Therefore,

$$\zeta_t = L(\pi(\nabla_t + \sigma_t \nu_t) - \frac{\nabla_t}{L}), \quad (26)$$

which represents the difference between the projected updates (g_T) and the gradient descent update with the step size $\frac{1}{L}$. A rational guess is that the $\zeta_{T_\rho-1}$ is the residual noise noise after the denoising operation, π . Thus, it is rational to assume the $\mathbb{E} \|\zeta_{T_\rho-1}\|^2$ is bounded as

$$\mathbb{E} \|\zeta_{T_\rho-1}\|^2 \leq \sigma_{\zeta_{T_\rho-1}}^2 p \quad (27)$$

for some parameter $\sigma_{\zeta_{T_\rho-1}}$ depending on the scheduler where p is the dimension of θ . Then

$$g_t = -\frac{1}{L} \nabla_t + \frac{1}{L} \zeta_t,$$

which leads to

$$\begin{aligned} \mathbb{E}[f_{T_\rho} - f_{T_\rho-1}] &\leq -\frac{1}{2L} \mathbb{E} \|\nabla_{T_\rho-1}\|^2 + \frac{1}{2L} \mathbb{E} \|\zeta_{T_\rho-1}\|^2 \\ &\leq -\frac{1}{2L} \mathbb{E} \|\nabla_{T_\rho-1}\|^2 + \frac{\sigma_{\zeta_{T_\rho-1}}^2 p}{2L}. \end{aligned}$$

Thus,

$$\begin{aligned} \mathbb{E} \|\nabla_{T_\rho-1}\|^2 &\leq \sigma_{\zeta_{T_\rho-1}}^2 p + 2L \mathbb{E}[f_{T_\rho-1} - f_{T_\rho}] \\ &= \sigma_{\zeta_{T_\rho-1}}^2 p + 2L \mathbb{E}[\text{rhs}]/C_\sigma. \end{aligned} \quad (28)$$

Thus, we complete the discussion of the rhs.

To the left-hand-side of Eq. (19), we first calculate the derivatives of the loss functions,

$$\partial f_T = \left(\sum_{t=1}^{T-1} \frac{\partial \sigma_t}{\partial \sigma} \nu_t^\top \frac{\partial g_t}{\partial \tilde{\nabla}_t} \right) \nabla_T. \quad (29)$$

Define a random variable as

$$V_T^\top \triangleq \sum_{t=1}^T \frac{\partial \sigma_t}{\partial \sigma} \nu_t^\top \frac{\partial (-g_t)}{\partial \tilde{\nabla}_t}, \quad (30)$$

where the negative sign is added because g_t is usually the opposite to the $\tilde{\nabla}_t$, for example, $g_t \propto -\tilde{\nabla}_t$ in SGD. Now we substitute Eqs. (29) and (30) into Eq. (19) to obtain

$$\text{lhs} = -\alpha V_{T_\rho-2}^\top \nabla_{T_\rho-1} - (1-\alpha) V_{T_\rho-1}^\top \nabla_{T_\rho}.$$

For brevity, we rewrite the expectation as

$$\mathbb{E}[\text{lhs}] = -\alpha \mathbb{C}_{T_\rho-1} - (1-\alpha) \mathbb{C}_{T_\rho}, \quad (31)$$

where we define

$$\mathbb{C}_t = \mathbb{E}[V_{t-1}^\top \nabla_t] = \sum_{i=1}^p \text{Cov}(V_{t-1,i}, \nabla_{t,i}), \quad (32)$$

where we utilize $\mathbb{E}V_{T-1} = 0$ because ν_t is an i.i.d. Gaussian random vector. Therefore, \mathbb{C}_T represents the covariance between two vectors and will be zero only when the two vectors are uncorrelated. Combining Eqs. (25), (28) and (31), we can get Eq. (20). \square

Uniform scheduler. We assume the $\sigma_t \equiv \sigma$ where the scheduler degrades as a constant σ . Therefore, with Eqs. (22) and (23), we have

$$\begin{aligned} T_\rho &= \lceil \rho_{\text{tot}}/\rho \rceil, \quad \xi = \rho T_\rho - \rho_{\text{tot}} \\ \mathcal{I}_{T_\rho} &= 1 - \gamma \xi, \quad \mathcal{I}_{T_\rho-1} = 1 + \gamma \xi - \gamma \rho \\ \partial \mathcal{I}_{T_\rho} &= \gamma T_\rho \frac{2\rho}{\sigma}, \quad \partial \mathcal{I}_{T_\rho-1} = -\gamma(T_\rho - 1) \frac{2\rho}{\sigma} \end{aligned}$$

where $\rho = \Delta^2/2\sigma^2$. In addition, we have

$$\begin{aligned} f_{T_\rho} - \hat{F} &= \alpha(f_{T_\rho} - f_{T_\rho-1}) \\ f_{T_\rho-1} - \hat{F} &= -(1-\alpha)(f_{T_\rho} - f_{T_\rho-1}). \end{aligned}$$

Substitute what we have into Eq. (21) giving

$$\begin{aligned} \text{rhs} &= \frac{1}{Z_T} [\alpha T_\rho + (1-\alpha)(T_\rho - 1)] \gamma \frac{2\rho}{\sigma} (f_{T_\rho-1} - f_{T_\rho}) \\ &= C_\sigma (f_{T_\rho-1} - f_{T_\rho}), \end{aligned}$$

where we update the constant C_σ from Eq. (24) as

$$C_\sigma = \frac{T_\rho - (1-\alpha) 2\rho \gamma}{2 - \gamma \rho} \frac{2\rho \gamma}{\sigma}.$$

If $\gamma \in (0, 2/\rho)$, then $C_\sigma > 0$. In our implementation, the condition always holds since $\gamma = 1/\rho_{\text{tot}} < 2/\rho$.

Taking the expectations of lhs and rhs, we have:

$$-\alpha \mathbb{C}_{T_\rho-1} - (1-\alpha) \mathbb{C}_{T_\rho} = C_\sigma \mathbb{E}[f_{T_\rho-1} - f_{T_\rho}], \quad (33)$$

where \mathbb{C}_T is given by substituting $\frac{\partial \sigma_t}{\partial \sigma} = 1$ into Eq. (30) and its definition, i.e.,

$$\mathbb{C}_T = \mathbb{E} \left[\sum_{t=1}^{T-1} \nu_t^\top \frac{\partial(-g_t)}{\partial \tilde{\nabla}_t} \nabla_T \right].$$

Analysis of batch algorithm. Recall the objective for the batch algorithm (Eq. (8)) is

$$\mathcal{L}^{\text{aug}}(r) = \sum_{b=1}^B \frac{1}{2\mu_b} \|\hat{r}_b - r_b\|_2^2 + \frac{\sum_{b \in \mathcal{T}_B} \mathcal{I}_b \bar{F}_b}{\sum_{b \in \mathcal{T}_B} \mathcal{I}_b}$$

where $Z_B = \sum_{b \in \mathcal{T}_B} \mathcal{I}_b$ and we use \mathcal{I}_b to denote $\mathcal{I}(h_b)$. Generally, we assume the batch budget is scheduled by parameterized model $r(\cdot)$ or r for simplicity, e.g., LSTMs. In

addition, assume $\Delta B = 1$, $\alpha = \mathcal{I}_{B_\rho-1}/\mathcal{I}_{B_\rho-1} + \mathcal{I}_{B_\rho}$. Vanishing $\frac{\partial \mathcal{L}^{\text{aug}}}{\partial r}$ causes

$$\sum_{b=1}^B \frac{1}{\mu_b} (r_b - \hat{r}_b) \frac{\partial r_b}{\partial r} = -\frac{\sum_{b \in \mathcal{T}_B} (\bar{F}_b - \hat{F}) \partial \mathcal{I}_b}{Z_B}, \quad (34)$$

where $Z_B = \sum_{b \in \mathcal{T}_B} \mathcal{I}_b$ and we define the notation $\bar{x}^b = \frac{1}{m} \sum_{t \in \mathcal{B}_b} x_t$ for any variables x_t related to the step t . In addition, we need to make the gradient of batch objective be zero, i.e.,

$$0 = \frac{1}{m} \sum_{t \in \mathcal{B}_b} \frac{\partial f_t}{\partial \sigma} + \frac{1}{m\mu_b} (\hat{r}_b - r_b) \sum_{t \in \mathcal{B}_b} \frac{\partial \rho_t}{\partial \sigma}, \quad (35)$$

where we let the batch size, $|\mathcal{B}_b|$, be m for any b . If the equalities hold in Eqs. (34) and (35), we can extend non-batch utility bound, Theorem B.2, to the batch version in Theorem B.3. Compared to the non-batch result, the batch utility bound is extended by the average of steps in batches. For example, \mathbb{C} is replaced by $\bar{\mathbb{C}}$.

Theorem B.3 (Utility bound of batch L2P protector). *If f is L -smooth and σ and r are independent from the noise variables ν_t , then we have:*

$$\mathbb{E} \overline{\|\nabla_t\|^2}^{B_\rho-1} \leq p \overline{\sigma_{\zeta_t}^2}^{B_\rho-1} - \frac{2L}{C_r} \sum_{b=1}^B \frac{\bar{\mathbb{C}}_t^b}{\bar{C}'_{\sigma,t}^b} \frac{\partial r_b}{\partial r}, \quad (36)$$

where $C_{\sigma,b}$ is a constant depending on the scheduler σ and the batch b (Eq. (42)), C_r is a constant depending on the batch scheduler r , \mathbb{C}_t represents the covariance between the noise and the true gradient (Eq. (32)), and σ_{ζ_t} is the upper bound of reduced noise variance (Eq. (27)).

Proof. We can easily get the derivative $\partial \mathcal{I}_b$ based on Eqs. (22) and (23):

$$\partial \mathcal{I}_{B_\rho} = \gamma \sum_{b=1}^{B_\rho} \frac{\partial r_b}{\partial r}, \quad \partial \mathcal{I}_{B_\rho-1} = -\gamma \sum_{\tau=1}^{B_\rho-1} \frac{\partial r_b}{\partial r}. \quad (37)$$

Still, we use lhs and rhs to denote the two sides of the Eq. (34). From the non-batch analysis, we can extend Eq. (25) as

$$\mathbb{E}[\text{rhs}] = C_r \mathbb{E}[\bar{F}_{B_\rho-1} - \bar{F}_{B_\rho}] \quad (38)$$

$$C_r = -\frac{1}{Z_B} [(1-\alpha) \partial \mathcal{I}_{B_\rho-1} - \alpha \partial \mathcal{I}_{B_\rho}] \quad (39)$$

where we still assume $r(\cdot)$ is independent from the private noise which makes C_r constant.

Consider the case when the f is L -smooth. Thus,

$$\mathbb{E}[f_t - f_{t-m}] \leq \mathbb{E}[\nabla_{t-m}^\top g_{t-m} + \frac{L}{2} \|g_{t-m}\|^2],$$

for all t in \mathcal{B}_{B_ρ} . Averaging over t , we get:

$$\begin{aligned} \mathbb{E}[\bar{F}_{B_\rho} - \bar{F}_{B_\rho-1}] &\leq \mathbb{E}[\frac{1}{m} \sum_{t \in \mathcal{B}_{B_\rho-1}} \nabla_t^\top g_t + \frac{L}{2} \|g_t\|^2] \\ &\leq -\frac{1}{2L} \mathbb{E} \overline{\|\nabla_t\|^2}^{B_\rho-1} + \frac{p \overline{\sigma_{\zeta_t}^2}^{B_\rho-1}}{2L}, \end{aligned}$$

where we make use of ζ_t defined in Eq. (26) and its bound in Eq. (27). Combine this with Eqs. (34) and (38) to get

$$\mathbb{E} \|\nabla_t\|^{2B_\rho-1} \leq p \overline{\sigma_{\zeta_t}^2}^{B_\rho-1} + \frac{2L}{C_r} \sum_{b=1}^B \frac{1}{\mu_b} (r_b - \hat{\rho}_b) \frac{\partial r_b}{\partial r}. \quad (40)$$

To find the value of $\frac{1}{\mu_b} (r_b - \hat{\rho}_b)$, we need to use Eq. (35) which gives:

$$\frac{1}{\mu_b} (r_b - \hat{\rho}_b) = \frac{1}{m C'_{\sigma,b}} \sum_{t \in \mathcal{B}_b} \frac{\partial f_t}{\partial \sigma}, \quad (41)$$

$$\overline{C'_{\sigma,t}}^b = \frac{1}{m} \sum_{t \in \mathcal{B}_b} \frac{\partial \rho_t}{\partial \sigma}. \quad (42)$$

According to Eqs. (29) and (30), it can be attained that

$$\mathbb{E} \left[\frac{1}{\mu_b} (r_b - \hat{\rho}_b) \right] = - \frac{\overline{C'_t}^b}{C'_{\sigma,t}} \quad (43)$$

where we modify Eqs. (30) and (32) as

$$\begin{aligned} C'_t &= \mathbb{E} [V_{t-1}^b]^\top \nabla_t = \sum_{i=1}^p \text{Cov}(V_{t-1,i}^b, \nabla_{t,i}) \\ V_{T,i}^b &= \sum_{t \in \mathcal{B}_b, t \leq T} \frac{\partial \sigma_t}{\partial \sigma} \nu_t^\top \frac{\partial (-g_t)}{\partial \tilde{\nabla}_t}, \quad T \in \mathcal{B}_b. \end{aligned}$$

Substituting it into Eq. (40), we can get Eq. (36). This thus completes the proof. \square

B.7 Implementation details

In this section, we present the implementation details for the projector and scheduler models. We use the Long-Short Term Memory (LSTM) networks as the backbone models.

Constrain Noise-Scale Prediction. To stabilize the L2P training, we explicitly constrain the range of the noise scale by using a Sigmoid activation in the scheduler. In addition, assuming the sigmoid output of the LSTM is y , we scale the output as

$$\sigma_{\min} + 2(\sigma_g - \sigma_{\min})y,$$

which is constrained in $(\sigma_{\min}, 2\sigma_g)$. The σ_{\min} is the lower bound of noise scale which derived from the upper bound of privacy budget, e.g., ρ_a for (ρ, a) -ctCDP. The σ_g is estimated by uniformly scheduling budgets. Generally, we will expect the predicted σ is centered around σ_g and is not too large, e.g., larger than $2\sigma_g$, which will violate the utility greatly. With the constraint, the noise prediction will not fluctuate significantly.

Coordinate-wise LSTM. Following the implementation in (Andrychowicz et al. 2016), we share the parameters of LSTM for all optimized parameters. Therefore, a small LSTM can work for optimizing large-scale neural networks.

Incremental Pre-training. Training an L2P model from scratch may suffer from a great amount of DP noise such that no useful information can be learned. For simple tasks, pre-training without noise can mitigate this noise gap since

it could avoid some random optimization exploration at the beginning. For complicated tasks, e.g., deep neural networks or large-scale models, the gap between L2L models and high-privacy L2P models can still be huge. The DP noise is added without considering the scale of the model. Specifically, when the size of model parameters increases and the scale of their every coordinate decreases meanwhile, the DP noise will not change if the clipping norm is fixed. Thus, the noise is relatively amplified. Especially for deep models, the small coordinates may greatly affect the model performance and thus deep models are more sensitive to DP noise. Therefore, neither a scratch nor an L2L model could be robust enough as an initialization for the L2P model. Instead, we suggest an incremental pre-training in which the privacy scale ϵ will incrementally increase from 0.

C Additional experiments

C.1 Quadratic optimization

Setup. To show the optimality of L2P training, we compare different algorithms by non-privately tuning them. Formally, given a fixed size of privacy budget, we train or tune a private optimizer on the quadratic optimization problems:

$$\min_{\theta} f(\theta) = \sum_{i=1}^{60} \|W_i \theta - y_i\|_2^2 + 0.001 \|\theta\|_2^2,$$

with random constants $W_i \in \mathbb{R}^{2 \times 2}$ and $y_i \in \mathbb{R}^2$ for $i \in \{1, \dots, 60\}$. We note that the tuning/meta-training is non-private such that we can see if the L2P can converge to the best private optimizer on the auxiliary datasets in comparison to baselines.

L2P-Proj (L2P with only projector) and L2P models are trained independently. Hence we can see the effect of adaptive perturbation. All optimizers are only tested on identical W , y and initial variables. The L2P and L2P-Proj are trained with normally randomized W and y for 200 epochs after they are pre-trained without noise in the same way and the best model are selected with the lowest loss when their privacy budgets are used up in validation. The iteration numbers for SGD-Adv and L2P-Proj are chosen in range $\{10, 20, 30, 40, 50, 60\}$ which are enough for convergence of such quadratic problems. The step size is chosen from 0.001 to 0.02 with 20 choices for SGD-Adv, while AGD uses the line search in the same range with 20 choices.

Results. In Fig. 8, four optimization methods are compared at the same $(0.05, 10^{-8})$ -DP. As shown in Fig. 8, the proposed L2P converges to the zone close to but not exactly at the noise-free optimal solution. The optimization algorithms stop before reaching the optimal, because of the imposed budget constraint. Recall that the model at the optimal solution may leak sensitive information. We see that L2P guides the optimization toward the optimal by adjusting the update directions. More importantly, L2P-Proj reduces the noise magnitude, uses more step budget but converges in less steps. Because L2P-Proj has omitted no budget scheduler, it stop in a different spot. In comparison, the SGD-Adv algorithm randomly walks in a rather large region. Though AGD reduces variances relatively, it barely finds the correct optimization direction.

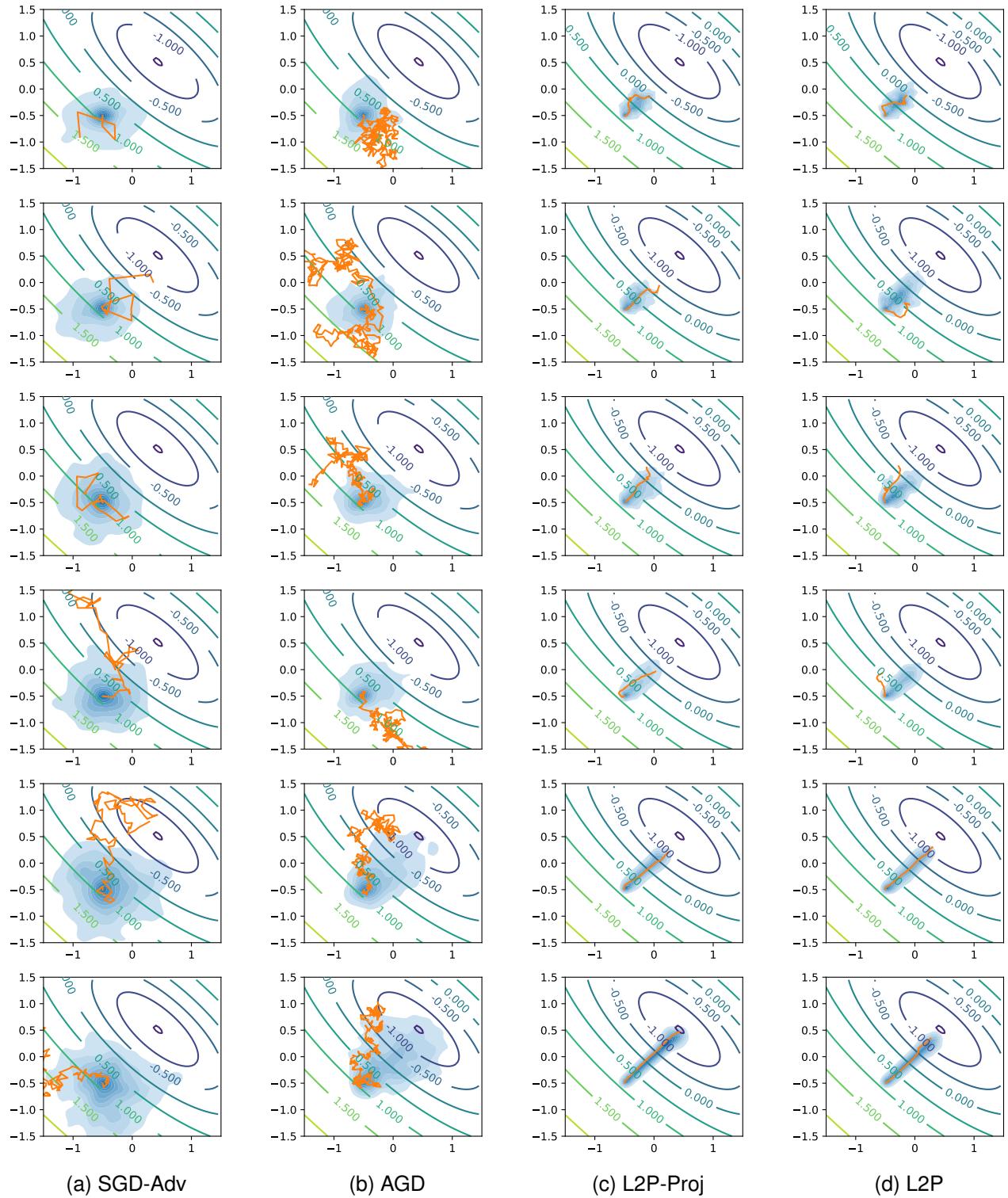


Figure 6: Comparison of the convergence $(\epsilon, 10^{-8})$ -DP with ϵ varying as $0.05, 0.1, 0.2, 0.4, 0.8, 1.6$ from top to bottom.

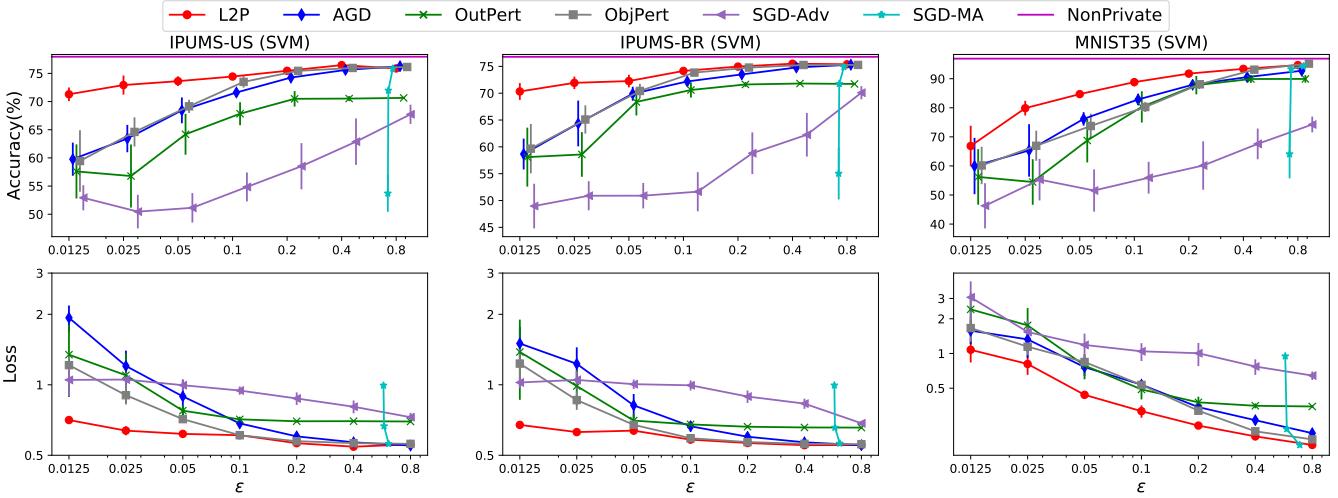


Figure 7: Test performance (top) and training loss values (bottom) by varying ϵ of SVMs classifiers on IPUMS and MNIST datasets. The error bar presents the size of standard deviations. For better visualization of error bars, some virtual horizontal offsets are added to every point.

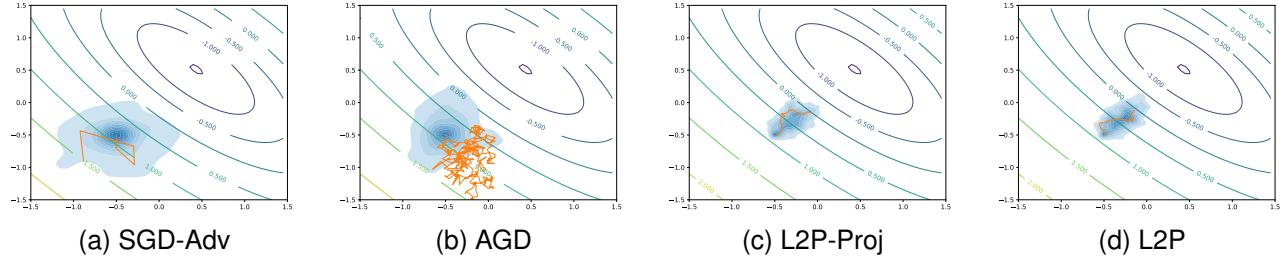


Figure 8: Comparisons of $(0.05, 10^{-8})$ -DP algorithms on a quadratic problem. Solid contour lines illustrate the loss values. The trajectory distribution of 100 repeated optimizations are shown in blue shadowed contours. Sampled trajectories are plotted in orange.

1087 Additional quadratic optimization results for different ϵ are
1088 shown in Fig. 6. Because the quadratic problem uses very few
1089 data and its gradients are in small scale, the optimization will
1090 be very sensitive to the noise. In this case, SGD-Adv rarely
1091 find the proper directions to go. In contrast, adaptive DP
1092 algorithms perform better. L2P-Proj behaves similarly to the
1093 L2P. However, when ϵ gets smaller, L2P is capable to use the
1094 budget more efficiently such that it can converge to a better
1095 position. Meanwhile, L2P-Proj cannot adaptively adjust its
1096 step budgets which make the execution length shorter. AGD
1097 shows some ability to correct the noised directions but it fails
1098 when the privacy constraint is higher.

1099 C.2 Experiments of generalization to different 1100 distributions

1101 In this section, we provide additional experiments for evaluating
1102 the generalization ability of L2P.

1103 **Experiments of SVMs.** The results are reported in Fig. 7.
1104 The results are similar to the Logistic.

1105 C.3 Classification on MNIST35 datasets with 1106 non-convex objectives and varying ϵ

1107 In addition to convex objectives, we also evaluate our mod-
1108 els on a popular non-convex model, neural networks. The
1109 evaluated network includes two layers of 20 and 2 units (for
1110 binary classification), respectively. The layers are connected
1111 with sigmoid activations. The loss is computed by the cross-
1112 entropy function.

1113 Different from logistic and SVM models, the patterns of
1114 optimizing a neural network could be hard to learn for L2P.
1115 The first issue is that the relative magnitude of noise w.r.t. the
1116 gradient coordinates is enlarged when the size of the gradient
1117 increases. For MNIST35 images of $28 \times 28 = 784$ pixels
1118 and a network with 20 units in the first layer, the number
1119 of connection weights could be 20×784 which is 20 times
1120 of an SVM model. Since a constant L2 sensitivity, e.g., 2,
1121 is expected, the gradient norm will be less than 2, which
1122 makes each coordinate much smaller while the number of
1123 coordinates increases. Meanwhile, the scale of noise will
1124 not change for each coordinate, which means it increases in
1125 a relative way. This issue makes private learning methods
1126 hard to achieve the same utility performance under the same

1127 privacy requirement. As a result, we adjust the clipping norm
 1128 to 2 which can slightly reduce the noise scale.

1129 The second issue has been discussed in L2L (Andrychowicz et al. 2016). The optimization of the L2L or the L2P
 1130 projector will encounter numerical issues for that the weights
 1131 in different layers of the optimized networks have different
 1132 magnitude. Since the optimization often focuses on the
 1133 large elements, it will cause the optimizer barely updated
 1134 and thus no convergence can be witnessed. As suggested by
 1135 Andrychowicz et al. (Andrychowicz et al. 2016), either scal-
 1136 ing the gradient by logarithm and sign mapping or scaling
 1137 the output of the L2L by a constant can mitigate the issue.
 1138 The former method augments the insignificant information
 1139 in the gradients, while the second one resembles the learning
 1140 rate such that the predicted updates will not fluctuate too
 1141 much. To avoid that the gradient values are overwhelmed
 1142 by noise and the L2P model absorb useless information, we
 1143 recommend the latter method and use the scaling constant as
 1144 0.05.

1145 In addition, optimizing small gradient coordinates with
 1146 noise could be challenging. Incremental pre-training intro-
 1147 duced in Appendix B.7 could reduce the hardness step by step
 1148 through the step could be flexible. For example, when trained
 1149 with $\epsilon = 0.2$, the L2P should be initialized by L2P without
 1150 noise. When trained with $\epsilon = 0.05$, the L2P should be ini-
 1151 tialized by L2P with $\epsilon = 0.2$ instead. Other experimental
 1152 settings follow the same principles in previous ones.

1153 For a more precise trade-off between utility and privacy
 1154 losses, a tuning of the privacy loss coefficient is necessary. A
 1155 recommended range of the coefficient is $\{500, 1000, 5000\}$.
 1156 Using the training data to monitor the convergence curves
 1157 will be helpful for choosing a proper coefficient. Meanwhile,
 1158 the estimated number of iterations which determines the ini-
 1159 tial privacy cost should be selected in $\{30, 60, 100, 400\}$. For
 1160 a small ϵ , a small iteration number will be more helpful for
 1161 the convergence.

1162 In the last column of Fig. 3, we compare the DP ϵ against
 1163 the utility metrics, accuracy and loss, on the MNIST35
 1164 dataset. The ObjPert and OutPert are excluded since it is
 1165 designed for convex problems only⁶. Because some methods
 1166 cannot converge in optimizing the network due to above-
 1167 mentioned computation difficulties with a large noise, we
 1168 adjust the range of ϵ . It can be seen that for similar low pri-
 1169 vacy conditions, L2P can train models with higher accuracy
 1170 in most cases. The ϵ of SGD-MA increases slowly after 0.8
 1171 and its left boundary is given when the the number of iteration
 1172 is 1, for which only a narrow range is available for
 1173 presentation.

1174 Notably, when $\epsilon > 0.6$, the performance of SGD-MA is
 1175 better than other methods except the L2P and AGD, which
 1176 is quite distinct from previous experimental results. Because
 1177 SGD-MA is originally designed for optimizing deep mod-
 1178 els (Abadi et al. 2016), the moment accountant method is
 1179 used for calculating the privacy level ϵ is more suitable for

1180
 1181 ⁶Though the OutPert is claimed to be capable for nonconvex
 1182 problems with SGD algorithm (Zhang et al. 2017), the algorithm re-
 1183 quires a constant of β -smoothness which can not be easily obtained
 1184 or designed for neural networks.

Table 1: Space and time complexity on different batch sizes. #unroll represents the number of unrolled steps in L2P training. ‘full’ means a full unrolling in one batch while 40 and 20 denotes the sizes of mini-batches.

#unroll	Memory (Mb)			Epoch time (sec)		
	full	40	20	full	40	20
200	474	282	250	19	21	21
400	730	282	250	41	90	89
600	1242	282	250	57	102	173
1000	1843	282	250	164	188	190
1200	2066	282	250	172	248	266
1600	2266	282	250	418	357	350

1185 mini-batch optimization. In other words, the noise scale in-
 1186 creases slower by ϵ using SGD-MA. Since the L2P uses the
 1187 same batch privacy estimation, it is rational to see the L2P
 1188 could share the benefit in optimization. When $\epsilon \geq 0.8$, SGD-
 1189 MA outperforms other methods. It is because the moment
 1190 accountant of privacy costs can lead to a tighter bound of
 1191 compositions than ρ -zCDP used by L2P and AGD when ϵ
 1192 increases. But ρ -zCDP can provide a more convenient and
 1193 efficient way to compute the privacy cost explicitly. Moment
 1194 accountant has to compute the privacy cost by iterating over
 1195 the moment orders which is relatively slow. Though L2P does
 1196 not outperform in accuracies when $\epsilon > 0.8$, it has obviously
 1197 lower training losses. It means L2P can optimize the losses
 1198 better within less iterations, which might be local optimal,
 1199 though.

C.4 Scalability

1200 When extending the meta-training of L2P from non-
 1201 constrained optimization to the constrained one, a critical
 1202 issue is the scalability of the algorithm. Here we compare the
 1203 time and space complexity of the batch and non-batch L2P
 1204 algorithms to give a view of the issue.

1205 **Setup.** The memory usage is measured by the GPU mem-
 1206 ory through the ‘nvidia-smi’ command on a Ubuntu 16 sys-
 1207 tem with a TITAN X GPU and CUDA 10.1 driver. The pro-
 1208 gram is written using TensorFlow 1.15⁷ and allocates memory
 1209 on need. The time is measured by the process time of one
 1210 epoch averaged on 100 epochs. We use a 4-layer MLP and
 1211 MNIST2 dataset for demonstration of budget-constrained op-
 1212 timization of schedulers. Because the memory usage grows
 1213 nonlinearly due to the TensorFlow allocation, it is slightly
 1214 more (around 20 to 50 Mb) than the true value while the trend
 1215 is not affected.

1216 **Results.** We empirically show the time and space com-
 1217 plexity versus the unrolling length in Table 1. We see that
 1218 the memory size increased quickly using the full batch while
 1219 mini-batch does not need extra memory. Instead, mini-batch
 1220 trade the memory with higher but acceptable time complex-
 1221 ity. Experiments for larger networks (e.g., 128 layers) are
 1222 included in the supplementary. Experimental results suggest
 1223 that when a longer unrolling and larger network (e.g., 1000

1224
 1225 ⁷<https://www.tensorflow.org/>

1221 steps for 128-layer network) are needed, slowly increasing
1222 the batch size will be beneficial to fit the algorithm into a
1223 limited GPU memory.

1224 D Discussion

1225 **a) Query Efficiency.** In comparison to AGD (Lee and Kifer
1226 2018), the proposed L2P requires fewer times in querying the
1227 datasets to obtain the private model, because that AGD needs
1228 to query the dataset at each regret. To see this, we assume
1229 that the unit privacy cost of one query is ϵ . At each iteration,
1230 AGD conducts two queries, including one query for objective
1231 and the other for the gradient, if no regrets occur. Once one
1232 regret occurs, at least one additional query is required. On the
1233 other hand, in L2P the regret query happens in the training
1234 process of protector on auxiliary learning tasks: when a bad
1235 gradient g_t causes a lower loss at L_t , the effects will be back-
1236 propagated to the LSTM cells, as shown in Fig. 1. Since
1237 there are no privacy concerns in training the protector, the
1238 back-propagation is more accurate than the random objective
1239 queries used in AGD.

1240 **b) From Noised Model Training to Optimizer Training.**
1241 In many learning algorithms, the noise-injected training, e.g.,
1242 dropout training (Wager, Wang, and Liang 2013), has shown
1243 to be a useful way to improve the robustness or generalization
1244 of an algorithm. Especially if there are infinitely many
1245 additional noised samples for training, the classification per-
1246 formance can be improved against specific noise test envi-
1247 ronment and both in linear space (Maaten et al. 2013) and in
1248 nonlinear one (Hong, Chen, and Lin 2018). A critical differ-
1249 ence between traditional noise-gradient-based DP algorithm
1250 and noised training is the number of noised samples in noised
1251 training or gradients in DP⁸. Because the constraint of pri-
1252 vacy budget, the allowed training step is limited. In other
1253 words, the number of noised gradients is far away from in-
1254 finity. Thus, the DP training can only result in a degraded
1255 model.

1256 Since, in DP, the noised component is the gradient which
1257 is the input of an optimizer, we propose to improve the opti-
1258 mizer by training it with noise. It is a direct extension of the
1259 noised training except that we also train the noise variance
1260 which is related to the privacy budget.

1261 **c) The Denoising Effect of Utility Projector** The projector
1262 in L2P is a denoising post-processing step which does *not*
1263 expose the original data, though. The guarantee is given in
1264 Lemma A.4. Denoising is not new in this area which has been
1265 studied in different directions. Recently, Balle and Wang en-
1266 hanced the one-time query utility on Gaussian mechanism
1267 by calibration and statical denoising (Balle and Wang 2018).
1268 They proved that a scaling factor on the query result could
1269 lead to a smaller expected distance between the private output
1270 and the original one. Though their method is the analytic nois-
1271 ing mechanism, it lacks necessary precise composition theory
1272 for multiple queries (e.g., a learning algorithm) in compari-
1273 son to their baseline moment accountants (Abadi et al. 2016).
1274 Earlier, Barak et al. (Barak et al. 2007) and Hay et al. (Hay
1275 et al. 2009) show that accurate estimation can be achieved

⁸Since noised samples can lead to noised gradients, we put them in approximately equivalent position here.

1276 by enforcing table releases and graph degree sequences to be
1277 consistent. Karwa et al. make use of the knowledge of the
1278 noise distribution to efficiently infer a DP graph. In addition,
1279 the idea integrating prior into the Bayesian inference from pri-
1280 vate outputs is formulated in (Williams and Mcsherry 2010).
1281 Bernstein et al. use Expectation-Maximization to denoise the
1282 parameter of a class of probabilistic graphical model (Bern-
1283 stein et al. 2017). When a target solution is sparse, it is also
1284 possible to project linear regression model to a known l_1 -ball
1285 which improves the resultant error.

1286 Among these work, Balle and Wang’s work (Balle and
1287 Wang 2018) and Lee and Kifer’s work (Lee and Kifer 2018)
1288 is the first to adaptively perturb the outputs. Balle and Wang
1289 chose to scale the outputs with a factor adapted to the size
1290 of private outputs. This idea is also reflected in our adaptive
1291 perturbation where the step noise variance is adjusted accord-
1292 ing to the private gradient norm. Differently, the variance is
1293 adaptively calibrated according to an additional query to an
1294 alternative objective. Also, this is leveraged in our method
1295 while the objective query happens in auxiliary training before
1296 a private execution.

1297 **d) Protecting L2P Training Data.** When there are very dif-
1298 ficult learning tasks and hard to identify public auxiliary
1299 learning tasks, one may want to use some private data for
1300 auxiliary learning, which may cause privacy concerns when
1301 using protector in the sensitive learning. In such a case, the
1302 training of L2P protector should also be done in a private
1303 learning setting, e.g., perturbing the gradients or objective
1304 functions through classical privacy-preserving algorithms.

1305 **e) Choice of Auxiliary Tasks.** The L2P protector as well
1306 as the learning-to-learn (Andrychowicz et al. 2016) are in
1307 fact performing transfer learning methods that gain gradient
1308 knowledge from auxiliary tasks and apply to a target learning
1309 task, with and without privacy consideration respectively. We
1310 see from our experiments that even though arbitrary choices
1311 of auxiliary tasks can deliver promising protectors, more
1312 relevant ones can further bring significant performance gains.
1313 This points out an important direction for future work, i.e.,
1314 how to quantify the task relatedness so we can use high-
1315 performance protectors for a given learning task.

1316 **f) The availability of a public auxiliary dataset similar
1317 enough to the private one.**

1318 Prior than our paper, public dataset has been suggested for
1319 tuning hyper-paramters of private learning algorithms (Wu
1320 et al. 2017). However, they did not state how to access the
1321 public data and the affect of using different auxiliary datasets.
1322 Our method extend the setting for practical purpose. In prac-
1323 tice, choosing public auxiliary dataset may not be a trivial
1324 work which greatly affect the performance. Here, we show the
1325 affects in experiments and with some primitive criteria, we
1326 can select useful auxiliary dataset easily. More complicated
1327 methods could be developed based on our primitive settings.
1328 For example, use cross validation to verify the effectiveness
1329 of the auxiliary datasets and extract more non-private infor-
1330 mation from the target private datasets for accurate auxiliary
1331 dataset selection.

1332 More reasons can support the usage of auxiliary datasets in
1333 private learning. First off, the availability of auxiliary datasets
1334 is the main assumption of this paper and however this is a

1335 rather common assumption used by other lines of work, such
1336 as learning-to-learn (L2L), where the learning trajectories
1337 from other tasks are leveraged. **2)** Secondly, for most learn-
1338 ing tasks in real-world there *are* similar publicly available
1339 datasets, such as electronic medical records or computer vi-
1340 sion tasks, on which we can construct auxiliary learning
1341 tasks. **3)** Moreover, the proposed L2P framework is learning
1342 momentum experiences from other optimization problems,
1343 instead of heavily relying on similar datasets, we therefore
1344 can leverage a wide spectrum of auxiliary optimization tasks
1345 *of the same class*. For example, a quadratic programming
1346 (QP) task may benefit from optimization procedures of many
1347 other QP, sometimes even a random QP problem of the same
1348 size according to our empirical study (Fig. 2). **4)** To evaluate
1349 the influence of the choice of auxiliary datasets, an experi-
1350 ment comparing different subsets of MNIST classes is con-
1351 ducted in Fig. 4. The experiment is constructed to simulate
1352 the scenario that both the auxiliary and protected datasets are
1353 used for binary classification task with same losses. It turns
1354 out that visually similar class sets, e.g., $\{4, 6\}$ (auxiliary) to
1355 $\{3, 5\}$ (protected), yields better accuracies while less similar
1356 ones still show performance above the best baseline.