
Dynamic Privacy Budget Allocation  
Improves Data Efficiency of Differentially 

Private Gradient Descent

Junyuan Hong1, Zhangyang Wang2, Jiayu Zhou1 
Michigan State University, University of Texas at Austin

1



Privacy Regulations and Risks
• GDPR: General Data Protection 

Regulation 

• HIPAA: Health Insurance Portability and 

Accountability Act, 1996

• SOX: Sarbanes-Oxley Act, 2002 

• PCI: Payment Card Industry Data 

Security Standard, 2004

• SHIELD: Stop Hacks and Improve 

Electronic Data 

• Security Act, Jan 1 2019
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Differential Privacy
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Privacy loss

Privacy loss at y Z(y) ≜ log ( p(𝒜(D) = y)
p(𝒜(D′ ) = y) ) where  and  are 

adjacent (differing at one sample)
y ∼ 𝒜(D) D, D′ 
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Differentially Private Stochastic Gradient Descent (DPSGD)

• Non-private SGD: 


•        Private SGD: 
θt+1 = θt − η∇t

θt+1 = θt − ηgt, gt = Privatize(∇t)
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DPSGD needs more data
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How?



A close look at 
the private convergence
• Not converge to the optimal


• Finite iteration

• Noise


• Improve the final iterate loss 
given a privacy budget:



• The upper bound of EER

Strictly	private

Less	private

6

High	variance	and	
away	from	optima



Why study convergence upper bound?
• Bound the worst case (highest errors).

• Find a way to speed up optimization algorithm

• Gain insights into privacy operations, e.g., noise magnitude, 

clipping norm, etc.

• To compare different algorithms: convergence rate
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Assumptions

• -Lipschitz continuous loss, 
 if  is differentiable.


• -Lipschitz continuous gradient or -smooth loss: 



• -Polyak-Lojasiewicz (PL) condition < -strongly convex 

G
f (x) − f (x′ ) ≤ G∥x − x′ ∥ ⇔ ∥f′ (x)∥ ≤ G f

M M
∇f (x) − ∇f (x′ ) ≤ M∥x − x′ ∥

μ μ
∇f (θ)

2
≥ 2μ( f (θ) − f (θ*))
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Revisit: Convergence of DPSGD with non-static σt

Proof	partially	based	on	(Wang,	et	al.,	NeurIPS	2017) 9



Revisit: Convergence of DPSGD with non-static σt

Finite	iteration Noise	impact

• Schedule noise to

• Extend iteration T

• Reduce the effect of noise
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Revisit: Convergence of DPSGD with non-static σt

How	much	improvement	can	we	achieve?

Reduce	noise	impact
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Influence	of	noise



Advantage of dynamic schedule



Advantage of dynamic schedule



Advantage of dynamic schedule on optimal upper bound

stable	when	the	loss	curvature	( )	is	sharpκ

Extend	iter
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#	of	allowed	iterations Excess	Expected	Risks

Sharp	loss	curvatureSmooth	loss	curvature



Advantage of dynamic schedule
• Empirically check the qt
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Further reduce the noise by momentum
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• Example of momentum in modern optimizers: Adam, SGD with 
momentum



Further reduce the noise by momentum

Proof	partially	based	on	(Zhu,	et	al.,	ArXiv	2020)

A	negative	term	if	 	is	small.η0

The	GD	noise
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Improved	sample	
efficiency	approaching	
upper	bound

Conclusion



How to estimate privacy policies?
• Learning to protect (Hong, et 

al. 2021): Transfer the dynamic 
policies learned from auxiliary 
tasks to private tasks based on 
the two insights:

• Adaptive noise magnitude 

(this work)

• Adaptive gradient sensitivity 

(Pichapati et al. 2019)
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Thank you for your time!
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