Efficient Split-Mix Federated Learning for On-Demand and In-Situ Customization

Junyuan Hong1, Haotao Wang2, Zhangyang Wang2 and Jiayu Zhou1

1Michigan State University, 2University of Texas, Austin
Federated Learning

- *Training* is distributed to enormous clients and aggregated by parameter averaging.
- *Advantage*: Privacy protection, communication efficiency, flexible training with heterogeneous clients.
Run-time Dynamics & Model Customization

Client required trade-off

Accuracy

Accuracy

Memory/Time Efficiency

Adv. Robustness

Model width
(number of layer channels)

ideal customization by individual FedAvg Models

• More training time
• Inefficient customization
Challenges for In-situ Customization from Heterogeneous Federated Learning

- In-situ customization baseline: SHeteroFL (ICLR 2021)
- Co-existing heterogeneity
 - Resources
 - Data

Client data from different domains

MNIST SVHN USPS SynDigits MNIST_M
Challenges for In-situ Customization from Heterogeneous Federated Learning

- In-situ customization baseline: SHeteroFL (ICLR 2021)
- Co-existing heterogeneity
 - Resources
 - Data

Client data from different domains

MNIST | SVHN | USPS | SynDigits | MNIST_M

Ineffective customization
Split-Mix

Flexible and affordable training
Split-Mix

Effective customization

width-flexible inference
Thank you!

More in our paper:

- Adversarial robustness customization.
- Joint customization of robustness and model sizes.

This material is based in part upon work supported by the National Institute of Aging 1RF1AG072449, Office of Naval Research N00014-20-1-2382, National Science Foundation under Grant IIS-1749940. Z.W. is supported by the U.S. Army Research Laboratory Cooperative Research Agreement W911NF17-2-0196 (IOBT REIGN).

Code: https://github.com/illidanlab/SplitMix