AD-VF: LLM-Automatic Differentiation Enables Fine-Tuning-Free Robot Planning from Formal Methods Feedback

Abstract

Large language models (LLMs) can translate natural language instructions into executable action plans for robotics, autonomous driving, and other domains. Yet, deploying LLM-driven planning in the physical world demands strict adherence to safety and regulatory constraints, which current models often violate due to hallucination or weak alignment. Traditional data-driven alignment methods, such as Direct Preference Optimization (DPO), require costly human labeling, while recent formal-feedback approaches still depend on resource-intensive fine-tuning. In this paper, we propose LAD-VF, a fine-tuning-free framework that leverages formal verification feedback for automated prompt engineering. By introducing a formal-verification-informed text loss integrated with LLM-AutoDiff, LAD-VF iteratively refines prompts rather than model parameters. This yields three key benefits: (i) scalable adaptation without fine-tuning; (ii) compatibility with modular LLM architectures; and (iii) interpretable refinement via auditable prompts. Experiments in robot navigation and manipulation tasks demonstrate that LAD-VF substantially enhances specification compliance, improving success rates from 60% to over 90%. Our method thus presents a scalable and interpretable pathway toward trustworthy, formally-verified LLM-driven control systems.

Publication
ArXiv
Junyuan "Jason" Hong
Junyuan "Jason" Hong
Incoming Assistant Professor

My research interest lies in the interaction of responsible AI and healthcare.

Related