Trustworthy

Federated Robustness Propagation: Sharing Adversarial Robustness in Federated Learning

Federated learning (FL) emerges as a popular distributed learning schema that learns a model from a set of participating users without requiring raw data to be shared. One major challenge of FL comes from heterogeneity in users, which may have …

Precautionary Unfairness in Self-Supervised Contrastive Pre-training

Recently, self-supervised contrastive pre-training has become the de facto regime, that allows for efficient downstream fine-tuning. Meanwhile, its fairness issues are barely studied, though they have drawn great attention from the machine learning …

Trap and Replace: Defending Backdoor Attacks by Trapping Them into an Easy-to-Replace Subnetwork

Deep neural networks (DNNs) are vulnerable to backdoor attacks. Previous works have shown it extremely challenging to unlearn the undesired backdoor behavior from the network, since the entire network can be affected by the backdoor samples. In this …

Federated Adversarial Debiasing for Fair and Transferable Representations

A distributed domain/group debiasing framework for unsupervised domain adaptation or fairness enhancement.